Today

® Project 1
® Processes

Project 1: Overview

® Tools Set Up
Just bochs on the lab machines
Rest are installed for you
® Environment Set Up
Run source PathSetter.bash
® Displaying one character
Build, execution process
Bash script
® Displaying “Hello World”
® Adding functions to display

Screenshot: One Letter

bochs .sourceforge. net
g/ugabi

16:36:62 §

Press F1z for boot menu.

Booting from Floppy

Screenshot: Hello, World!

0.0 \| Bochs x86 emulator, http://bochs.sourceforge.n
USER, G

et/

0.6c 08 Apr 2009
released under the GNU LGPL

.sourceforge.net
/uw nongnu .org/vgabios
1 1.235 § $Da /09,28 16:36

apmbios pcibios eltorito rombios

Press F12 for boot menu

Booting from Floppy

CTRL + 3rd button encbles nouse [BERMIU [ees e | [[1 []

Screenshot: Background Color

X| Bochs x86 emulator, htt;

/bochs.sourceforge.net

0.6c 08 Apr 2009
s released under the GNU LGPL

1
. httpis/bochs.sourceforge.net
. httpi//wew.nongnu.org/ugabios

Jptions: apmbi

Booting from Floppy. ..

CTRL + 3rd button enables nouse [Rambu [oees Foee | 1]

16-bit Real Mode Memory Map

OXFFFFF
<—— OxFFFFO
0xF0000

0xE0000
0xC0000
0xA0000

R%ad fr;)m sedc_tlor R
on boot disk o o
0x00400

0x00000

16-bit Real Mode Registers

® General Purpose Registers:
ax, bx, cx, dx
® Each holds 16 bits
Half registers:
® ax = OXABCD
» ah = 0xAB al = 0xCD
» ax =ah * 256 +al

Sept 30, 2015 Sprenkle - CSCI330

Segmented Memory Access
in 16-bit Real Mode
® Registers hold 16 bits but memory addresses are 20
bits?
® All addresses have 2 parts:
Segment — 16 bits
Offset — 16 bits
Ex: 0x1000 : OXABCD
segment offset
® Computing the actual address:
address = segment*0x10 + offset
® Add extra O to right of segment and add offset.
E.g. 0X1ABCD

Sept 30, 2015 Sprenkle - CSCI330 8

Project 1: Hints

® Read through the directions
Later hints will help earlier parts
® Break up into small pieces
Just display one letter (as in example)
Then work on displaying a word
Then work on extensions
® Testing using gcc
Print out addresses in hex (%x)
® Need to remove if using bcc

Project 1: Due next Wednesday

Sept 30, 2015 Sprenkle - CSCI330 9

PROCESSES

Sept 30, 2015 Sprenkle - CSCI330 10

What is a Process?

® Process — a sequential program execution

e |deally, we would like our OS to be capable of
running multiple processes/jobs at once
(i.e., multiprogramming)

® Challenge: how to implement & ensure efficient
use of system resources?

Sept 30, 2015 Sprenkle - CSCI330 11

Difference between a process and a program

® Baking analogy:
Recipe = Program
Baker = Processor
Ingredients = data
Baking the cake = Process
® |nterrupt analogy
The baker’s son runs in with a wounded hand
First aid guide = interrupt code

Sept 30, 2015 Sprenkle - CSCI330 12

Main OS Process-related Goals

® Interleave the execution of existing processes to
maximize processor utilization

® Provide reasonable response times
® Allocate resources to processes

® Support inter-process communication (and
synchronization) and user creation of processes

Sept 30, 2015 Sprenkle - CSCI330 13

Process Control Blo

® Used by OS/kernel to
Keep track of processes

switch between processes
(i.e., context switch)

® Context switching wastes
time (no new work), but
enables
multiprogramming

ck (PCB)

process state

process number

program counter

registers

memory limits

list of open files

Sept 30, 2015 Sprenkle - CSCI330 14

CPU Switch From Process to Process

process P, operating system process P,
interrupt or system call
executing
i
N idle

reload state from PCB,

interrupt or system call executing

save state into PCB,

. idle

reload state from PCB|
lexecuting 1[\

Sept 30, 2015 Sprenkle - CSCI330 15

idle

Modeling Multiprogramming

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13
. 20% 1/0 wait
£ 100 |-
8
4 o
3 g0 [50% I/O wait
£
s 60— 80% /O wait
T
S 40 -
E
2 20
(&)
| | I 1 | I | | | |

CPU utilization as a function of the
number of processes in memory.

Sept 30, 2015 Sprenkle - CSCI330 16

PROCESSES IN UNIX

Sept 30, 2015 Sprenkle - CSCI330 17

Process Creation

parent (\\wau/\ resumes
fork())
T N gERE
(=t) (‘exll(i/)

® Child is a complete copy of parent with a new id
® Exec() loads new executable image

Sept 30, 2015 Sprenkle - CSCI330 18

C Program Forking Separate Process

Sept 30, 2015

int main(Q) {

Pid_t pid;

pid = fork(); /* fork another process */

if (pid < @) { /* error occurred */
fprintf(stderr, "Fork Failed");

exit(-1);

} else if (pid == @) { /* child process */
execlp("/bin/1s", "1s", NULL);

} else { /* parent process */

/* parent will wait for the child to complete */

wait (NULLD;

printf ("Child %d Complete", pid);

exit(0);

Sprenkle - CSCI330

Managing Processes (Unix)

® pid = fork() - create a child process
® wait(status) / waitpid(pid, status, opts)

wait for termination of a child. Either blocks, gets
child return-code, or exit code (if no children)

® execvp(name, args)
replace image by name, with arguments args
Exec family

® exit(status)

Sept 30, 2015 Sprenkle - CSCI330

Executing the Is command

User
code

Kernel
code

Sept 30, 2015

PID =501 PID = 748

New process

1. Fork call

PID = 748

Same process —|

3. exec call

created

4. sh overlaid
with Is

T
Allocate child's process table entry
Fill child's entry from parent
Allocate child's stack and user area
Fill child's user area from parent
Allocate PID for child
Set up child to share parent's text
Copy page tables for data and stack
Set up sharing of open files
Copy parent's registers to child

Sprenkle - CSCI330

T

Find the executable program
Verify the execute permission
Read and verify the header

Copy arguments, environ to kernel
Free the old address space
Allocate new address space

Copy arguments, environ to stack
Reset signals

Initialize registers

Example tree of processes

G e
pid =7776 pid =294
Csh sdt_shel
o =t
|
/oA Con
. o
Netscape emacs 7
passrss X pisios Ii II

Sprenkle - CSCI330

Sept 30, 2015

What does an OS need to do to allow
multiprogramming?

® What resource concerns?

Sept 30, 2015

Sprenkle - CSCI330

Process in Memory

. max
e Aprocess includes: o
» program counter
what line of program text l
to execute next
»> stack
pointer to top of stack & T
frame pointer to calling
function e
» data section or data
heap
room to allocate data text
0

Sept 30, 2015 Sprenkle - CSCI330

Virtual Address Space (VAS)
Example (32-bit)

An addressable array of bytes...
Contains every instruction the process
thread can execute...
And every piece of data those
instructions can read/write...
i.e., read/write == load/store on
memory
Partitioned into logical segments
(regions) with distinct purpose and
use.
Every memory reference by a thread is
interpreted in the context of its VAS.

Resolves to a location in machine
memory

Ox7fEFffff

Reserved

Stack

¥
1

Dynamic data
(heap/BSS)

Static data

Text
(code)

ox0

Stack Pointer ——» top of stack

Implementing Multiprogramming

How does the OS kernel implement resource
sharing?

Memory — protect with base & bound

Processor:

® apply scheduling algorithm (next)

® Interrupts: periodically return control to kernel

(project 2)

Sept 30, 2015 Sprenkle - CSCI330

Locals of
DrawLine stack frame
for
) Return Address DrawLine
Frame Pointer ——» subroutine
Parameters for
DrawLine
Locals of
stack frame DrawSquare
for Return Address
DrawSquare
subroutine Parameters for
DrawSquare
Sept 30, 2015 Sprenkle (.SUISSO 26
Next Time

® More on processes
® Work on Project 1

Sept 30, 2015 Sprenkle - CSCI330

