Today

® Project 1
® Processes

Sept 30, 2015 Sprenkle - CSCI330

Project 1

® Submission

Just like setup is different because we have a
different programming environment, we have
different submission

Use the instructions on the web page (rather than in
the PDF)

Sept 30, 2015 Sprenkle - CSCI330 2

Review

® What information/data is associated with a
process?

® How do we create new processes?

Sept 30, 2015 Sprenkle - CSCI330 3

The story so far: process and kernel

® A (classical) OS lets us run programs as processes.
® A process is a running program instance (with a thread).
Program code runs with the CPU core in untrusted user mode.
® Processes are protected/isolated.
Virtual address space is a “fenced pasture”
Sandbox: can’t get out. Lockbox: nobody else can get in.
® The OS kernel controls everything.

Kernel code runs with the core in trusted kernel mode.

User processes/
segments

user
space

kernel 0
kernel space

Processes and Their Threads

virtual address space main thread other threads (optional)

E. 2. o,

Each process has a

virtual address space Each process has a main

B On real systems, a process
(VAS):a pnvate.name thread b.ound tothe VAS, can have multiple threads.
space for the virtual with a stack.

memory it uses. We presume that they can all
If we say a process does
. something, we really mean make system calls and block
The VAS is both a *thing, y independently.
“sandbox” and a its thread does it.
“lockbox”: it limits what
the process can see/do, The kernel can suspend/ A
and protects its data restart a thread wherever

from others. and whenever it wants.

Theater Analogy

virtual
script memory

/ (stage)
Threads
Program 3 ~3

: ﬁ Address space‘

Running a program is like performing a play.

[Ipcox]

Foreground and background

® A multiprogrammed OS can run many processes
concurrently / simultaneously / at the same time.
® When you run a program as a command to the shell (e.g.,
Terminal), by default the process is foreground.
The shell calls the OS to create a child process to run the
program, passes control of the terminal to the child process,
and waits for the process to finish (exit).
® You can run a program in background with & syntax.
& is an arbitrary syntax used in Unix since the 1960s.

The shell creates the child process and starts it running, but
keeps control of the terminal to accept another command.

& allows you to run multiple concurrent processes from shell

CPU Scheduling 101

® The OS scheduler makes a sequence of “moves”

Next move: if a CPU core is idle, pick a ready thread
from the ready pool and dispatch it (run it).

Scheduler’s choice is “nondeterministic”

Scheduler and machine determine the interleaving of
execution (a schedule).

blocked If timer expires, or
threads / ready pool wait/yield/terminate
Wakeu,

p "\~ GetNextToRun

SWITCH()

Exceptions: trap, fault, interrupt

intentional unintentional
happens every time contributing factors
synchronous trap: system call - fault
caused by an open, close, read,' invalid or protected
instruction write, fqu, exec, exit, address or opcode, page
wait, kill, etc. fault, overflow, etc.
asynchronous “software interrupt” interrupt
caused by some software requests an caused by an external
other event interrupt to be delivered event: 1/0 op completed,
at a later time clock tick, power fail, etc.

Thread states and transitions

If a thread is in the ready state thread, then the system may choose to run it “at
any time”. The kernel can switch threads whenever it gains control on a core,
e.g., by a timer interrupt. If the current thread takes a fault or system call trap,
and blocks or exits, then the scheduler switches to another thread. But it could
also preempt a running thread. From the point of view of the program, dispatch
and preemption are nondeterministic: we can’t know the schedule in advance.

running | These preempt and
yield dispatch transitions are
preempt controlled by the kernel
slee|) scheduler.
P dispatch

Sleep and wakeup
transitions are initiated
by calls to internal
sleep/wakeup APIs by a
running thread.

What cores do

»ri Idle loop —

pause —— idle

getNextToRun() nothing? I
get put
thread “ thread sleep
exit

thread quantum
(runqueue) ired

—_————

switch in

switch out
run thread

Switching out

® What causes a core to switch out of the current
thread?
Fault+sleep or fault+kill %
Trap+sleep or trap+exit
Timer interrupt: quantum expired

Higher-priority thread becomes ready
L

switch in switch out
run thread

Note: the thread switch-out cases are sleep, forced-yield, and exit,
all of which occur in kernel mode following a trap, fault, or interrupt.
But a trap, fault, or interrupt does not necessarily cause a thread switch!

Understanding performance: queues

Requests wait
here in queue

offered load Handle request:
request stream @ task occupies center
arrival rate A for D time units
(requests/time) “Service (its service demand).
Request == task == job Center’

(e.g., a CPU core)

Performance analysts study
behavior of queuing networks
under various assumptions

about the workload and
scheduling policies. Q_ueues
likely

Priority

® Most modern OS schedulers use priority
scheduling

Each task/thread has a priority value (integer)
The scheduler favors higher-priority threads

Threads inherit a base priority from the
associated process

User-settable relative importance within
application

Internal priority adjustments as an
implementation technique within the
scheduler.

Priority 101

Priority 140

alalHfnlnln

How to set the priority of a thread?
® How many priority levels?
32 (Windows) to 128 (OS X)

Ordering runqueues by priority

CPU-X Active
runqueve

B e |
O rromz |\

> Real-ime task prorites queue
i (runqueue)

Priority 100 J
In real systems, the simple

1= g
[ooy 101) “cartoon ready queue” may be
=- P

i

Task priority FIFO lists

a multi-level queue: an
ordered array of queues, one
B" Priority 140 | | for each priority level.

In a typical OS, each thread has a priority, which may change over time.
When a core is idle, pick a thread with highest priority.

If a higher-priority thread becomes ready, then preempt the thread
currently running on the core and switch to the new thread.

Multi-level queue

Multi-level priority queue structures are commonly used in
OSs to represent the run queue == ready pool == ready list.

Ready pool

P=1: high priority

GetNextToRun selects job
at the head of the highest

priority queue that is not empty. O P=N: low priority
Most machines have an
instruction to find the highest Array of queues

non-empty queue quickly. indexed by priority

constant time, no sorting

NICE(1) BSD General Commands Manual NICE(1)
|
NAME

nice —- execute a utility with an altered scheduling priority

| SYNOPSIS
nice [-n increment] utility [arqument ...]

DESCRIPTION
nice runs utility at an altered scheduling priority. If an increment is
given, it is used; otherwise an increment of 10 is assumed. The super-—
user can run utilities with priorities higher than normal by using a neg-
ative increment. The priority can be adjusted over a range of -20 (the
highest) to 20 (the lowest).

Available options:

| -n increment
A positive or negative decimal integer used to modify the system
scheduling priority of utility.

DIAGNOSTICS
| The nice utility shall exit with one of the following values:

1-125 An error occurred in the nice utility.

126 The utility was found but could not be invoked.
127 The utility could not be found.

Otherwise, the exit status of nice shall be that of utility.

Processor allocation policy

® Key issue: how should an OS allocate its CPU
resources among contending demands?

Resource allocation policy: how the OS controls use of
hardware resources.

® Focus on OS kernel

User code can decide how to use the processor time it is
given

® Which thread to run on a free core?
GetNextThreadToRun
® For how long? How long to let it run before we take
the core back and give it to some other thread?
timeslice or quantum
® What are the policy goals?

Separation of policy and mechanism

10t 101

syscall trap/return fault/return

system call layer: files, processes, IPC, thread syscalls
fault entry: VM page faults, signals, etc.

thread/CPU/core management: sleep and ready queues
memory management: block/page cache

000 — 00

sleep queue ready queue

1/0 completions interrupt/return timer ticks

Separation of policy and mechanism

10t 10t

syscall trap/return fault/return

system call layer: files, processes, IPC, thread syscalls
fault entry: VM page faults, signals, etc.

thread/CPU/core management: sleep and ready queues
memory management: block/page cache

cee—Der]

sleep queue ready queue policy

1/0 completions interrupt/return timer ticks

Scheduler policy goals

What measures help us evaluate
if a schedule or scheduler is “good’?

Sept 30, 2015 Sprenkle - CSCI330 2

Scheduler policy goals

® Response time or latency, responsiveness
How long does it take to complete a task or request? (R)
Say a task takes D time units of work (its service demand)

® But how long does it spend waiting for service?
® Throughput
How many tasks/requests complete per unit of time? (X)
Utilization: what % of time is each core/device busy? (U)
® Meet deadlines, reduce jitter for periodic tasks
e.g., videos and other continuous media

Ideal throughput: cartoon version

throughput == arrival rate
The center is not saturated: it
completes requests at the rate
requests are submitted.

throughput == peak rate

The center is saturated. It can't
go any faster, no matter how
many requests are submitted.

Ideal throughput

Response . e

rate . is graph shows
(throughput) saturation throughput (e.g., of a

server) as a function

i.e., request of offered load. Itis
completion peak rate idealized: your

rate mileage may vary.

Request arrival rate (offered load)

Throughput: reality

Thrashing, also called congestion collapse

Real servers/devices often have some pathological behaviors at
saturation. E.g., they abort requests after investing work in them
(thrashing), which wastes work, reducing throughput.

delivered
throughput
S “ ”
Response (‘goodput’)
rate .
(throughput) saturation Illustration only
Saturation behavior is
i.e., request highly sensitive to
completion peak rate implementation
rate choices and quality.

Request arrival rate (offered load)

Utilization

® What is the probability that the center is busy?
Answer: some number between 0 and 1.

® What percentage of the time is the center busy?
Answer: some number between 0 and 100

® These are interchangeable: called utilization U

® The probability that the service center is idle is
1-U

Utilization: cartoon version

U=XD U=1=100%
X = throughput The server is saturated. It has
D = service demand, i.e., how no spare capacity. It is busy all
much time/work to complete the time.
each request (on average).
1 == 100% saturated
== ° This graph shows
utilization (e.g., of a
Utilization saturation server) as a function
(also called of offered load. Itis
load factor) idealized: each
request works for D
peak rate time units on a single
service center (e.g., a
single CPU core).

Request arrival rate (offered load)

The Utilization “Law”

e |f the center is not saturated then:
U = AD = (arrivals/time) * service demand
® Reminder: that’s a rough average estimate for a
mix of arrivals with average service demand D.
® |f you actually measure utilization at the center,
it may vary from this estimate.
But not by much.

Understanding utilization and throughput

® Throughput/utilization are “easy” to understand for
a single service center that stays busy whenever
there is work to do.
® |t is more complex for a network of centers/queues
that interact, and where each task/job/request uses
multiple centers.
® And that’s what real computer systems look like.
E.g., CPU, disk, network, and mutexes...
Other synchronization objects

Is high utilization good or bad?

Understanding utilization and throughput

Is high utilization good or bad?

Good. We don't want to pay $$$ for resources and then leave them idle.
Especially if there is useful work for them to do!

Bad. We want to serve any given workload as efficiently as possible.
And we want resources to be ready for use when we need them.

Utilization €- contention

Another goal: fairness

® When resources are shared, fairness is important.
® But what does fairness really mean? What makes an
allocation or schedule “fair”?
“Divide the pie” evenly? (Or according to weighted shares?)

Low variance in allocations or wait times? (Or equal
slowdown)

e.g., “Jain fairness index”

Freedom from starvation? (Or upper bound on wait time)
Serve the clients who pay the most? (Market-based)

Serve the clients who benefit the most? (Maximize global
welfare)

Freedom from envy?
® This is a deep and interesting topic. But we skip it.

BRAINSTORM!

Start simple. Compare in terms of metrics. Discuss tradeoffs

SCHEDULING ALGORITHMS

Sept 30, 2015 Sprenkle - CSCI330 31

A simple policy: FCFS

® The most basic scheduling policy is first-come-first-
served (FCFS), also called first-in-first-out (FIFO).

® FCFSis like the checkout line at the Kwik-e-mart

® Maintain a queue ordered by time of arrival.

® GetNextToRun selects from the front (head) of
the queue.

Evaluating FCFS

® How well does FCFS achieve the goals?
® Throughput. FCFS is as good as any non-preemptive
policy.
....if the CPU is the only schedulable resource in the system.
® Fairness. FCFSis intuitively fair...sort of.

“The early bird gets the worm”...and everyone is fed...
eventually.

® Response time. Long jobs keep everyone else waiting.
Consider service demand (D) for a process/job/thread.

D=1 D=2 D=3

D-3 D=2 p-1
.._ ._. —— —
5 6

Tlme
tail I I @ R=(3+5+6)3=4.67

runQueue

wakeup
put
et
force-yield put thgread
quantum expire ——> to
or preempt tail dispatch
Next Time

® More processor scheduling
® Project 1

Sept 30, 2015 Sprenkle - CSCI330 34

