Today

® Process Scheduling
® Process Management

Sept 30, 2015 Sprenkle - CSCI330

Project 1

® Questions?

Operating systems are like underwear —
nobody really wants to look at them.
-- Bill Joy
Co-Founder Sun Microsystems

Sept 30, 2015 Sprenkle - CSCI330 2

Core-and-Driver Analo

zipcar

wheels when you want them

The machine has a bank
of CPU cores for threads
to run on.

The OS allocates cores to
threads (the “drivers”).

Aw \ A_Wﬁ’)
o 2 O AT ° Cores are hardware.
— o w They go where the driver
. tells them.

Core #1 Core #2 0S can force a switch of

drivers any time.
Sept 30, 2015 Sprenkle - CSCI330

Review: CPU Scheduling Policy

® |n designing the CPU scheduler there are two
major policy questions that must be answered:

Under what circumstances will the scheduler be
invoked?

® Non-preemptive vs. Preemptive scheduling
When the scheduler is invoked, what criterion will it
use to select from the ready queue the next process
to run?

® Scheduling Algorithm

Sept 30, 2015 Sprenkle - CSCI330 4

Review: Scheduling Opportunities

® There are four opportunities for the CPU
scheduler to select a new process to run:

The running process blocks (running - waiting)
A new process is created (new = ready)
The running process is interrupted (running
—ready)
® Oryields
® A process may also unblock. (waiting ->ready)

A process exits. (running—>terminated)

Sept 30, 2015 Sprenkle - CSCI330

Review

® \What are metrics we can use to determine
process/thread scheduling efficiency?

® What are algorithms we can use to schedule
jobs?

Sept 30, 2015 Sprenkle - CSCI330 6

Review: Scheduler Metrics

® Response time or latency, responsiveness
How long does it take to complete a task or request? (R)
Say a task takes D time units of work (its service demand)
® But how long does it spend waiting for service?
® Throughput
How many tasks/requests complete per unit of time? (X)
Utilization: what % of time is each core/device busy? (U)
® Meet deadlines, reduce jitter for periodic tasks
e.g., videos and other continuous media

A simple policy: FCFS

® The most basic scheduling policy is first-come-first-
served (FCFS), also called first-in-first-out (FIFO).

® FCFSis like the checkout line at the Kwik-e-mart

® Maintain a queue ordered by time of arrival.

® GetNextToRun selects from the front (head) of
the queue.

wakeup
put
i l runqueue get
force-yield put [get thread
quantum expire ——————> to
t tail - “head i
or preemp! dispatch

Sept 30, 2015 Sprenkle - CSCI330 8

Evaluating FCFS

® How well does FCFS achieve the goals?
® Throughput. FCFS is as good as any non-preemptive
policy.
....if the CPU is the only schedulable resource in the system.
® Fairness. FCFSis intuitively fair...sort of.

“The early bird gets the worm”...and everyone is fed...
eventually.

® Response time. Long jobs keep everyone else waiting.
Consider service demand (D) for a process/job/thread.

D=1 D=2 D=3

D=3 D=2 D=1
o 0 : =
Time —
ta R=(+5+6)/3=467
runQueue

Sept 30, 2015 Sprenkle - CSCI330 9

Non-Preemptive vs Preemptive

® Depending upon which scheduling opportunities
are used by a scheduler, the scheduling can be:
Non-Preemptive: The scheduler will allow the
running process to continue to run as long as it
remains ready (i.e., doesn’t block or exit).

Preemptive: The scheduler may set aside the
running process in favor or another at any scheduling
opportunity

® Enables time-sharing, priority scheduling

Sept 30, 2015 Sprenkle - CSCI330 10

Preemptive FCFS: Round Robin

® Preemptive timeslicing is one way to improve fairness of FCFS.
® |f job does not block or exit, force an involuntary context
switch after each quantum Q of CPU time.
® FCFS without preemptive timeslicing is “run to
completion” (RTC).
® FCFS with preemptive timeslicing is called round robin.

D=3 D=2 D=1
——

FCFS-RTC —
round robin —
/_ 3+e 5 6

R=(3+5+6+¢)3=467+¢

Son‘exé switch In this case, R is unchanged by timeslicing.
l

Is this always true?

Sept 30, 2015 Sprenkle - CSCI330 11

Round Robin vs. FIFO

Tasks Round Robin (1 ms time slice)

o0 0 0 0O O
g o g o

FIFO and SJF
O —
@ —
o —
@ ——
®]

Time
Sept 30, 2015 Sprenkle - CSCI330 12

Round Robin

Tasks Round Robin (1 ms time slice)
Q)] I:l [rest of task 1
@ [0
6) O
@ 0
©) O
Round Robin (100 ms time slice)
a | [rest of task 1
@ O
€) O
@ O
©)]
Time
Sept 30, 2015 Sprenkle - CSCI330 13

Evaluating Round Robin

D=5

R=(5+6)2=5.5
R=(2t6+¢)2=4+¢

® Response time. RR reduces response time for short jobs.

For a given load, wait time is proportional to the job’s total
service demand D.

® Fairness. RR reduces variance in wait times.
But: RR forces jobs to wait for other jobs that arrived later.
® Throughput. RR imposes extra context switch overhead.
Degrades to FCFS-RTC with large Q.

Sept 30, 2015 Sprenkle - CSCI330 14

Overhead and Goodput

® Context switching is overhead: “wasted effort”.

It is a cost that the system imposes in order to get
the work done. It is not actually doing the work.

Q/(e+eg)

Efficiency

or goodput Q

What percentage of the

time is the busy resource
doing useful work?

€

A/_

Quantum Q

Sept 30, 2015 Sprenkle - CSCI330 15

1 100%

Minimizing Response Time: SJF (STCF)

® Shortest Job First (SJF) is provably optimal if the
goal is to minimize average-case R.
Also called Shortest Time to Completion First (STCF) or
Shortest Remaining Processing Time (SRPT)
Example: express lanes at the MegaMart
® |dea: get short jobs out of the way quickly to
minimize the number of jobs waiting while a long
job runs.
Intuition: longest jobs do the least possible damage to
the wait times of their competitors.

D=1 D=2 D=3
— ——
o -0 o
R=(1+3+6)3=333
Sept 30, 2015 Sprenkle - CSCI330 16

FIFO vs. SIF

Tasks FIFO

m |

@ O

6 0

@ 0
® 0

SJF

m []
@ 0

e 0O

@ O

©) O

Time
Sept 30, 2015 Sprenkle - CSCI330 17

The Process Mix

® Two broad classes of processes:

CPU Bound: A process that is spending most of its
time doing CPU operations.

1/0 Bound: A process that is spending most of its
time doing I/O operations.
® Processes can switch between being CPU Bound
and being /0 Bound during their execution

Sept 30, 2015 Sprenkle - CSCI330 18

Anatomy of a read

3. Check to see if requested data (e.g., 6. Return to
a block) is in memory. If not, figure user mode.
where it is on disk, and start the I/O. 5. Copy data from

kernel buffer to user

buffer in read.

2. Enter kernel (kernel mode)
for read syscall.

1. Compute 4. sleep for 1/O (stall)

(user mode) Wakeup by interrupt. cPU

Disk

Time ——

Sept 30, 2015 Sprenkle - CSCI330 19

Mixed Workload

Tasks 1/0 1/0
\I/completes \l/completes

1obound [] 0
™ ™

issues gets
110 CPU
request

S — —

Time

Sept 30, 2015 Sprenkle - CSCI330 20

Two Schedules for CPU/Disk

1. Naive Round Robin -0
5 5 | |
— — "]]
— I E—— —

4

CPU busy 25/37: U =67%
Disk busy 15/37: U = 40% Eﬁz&

2. Add internal priority boost for I/O completion

33% improvement in utilization
When there is work to do,

U == efficiency.

More U means better throughput.
Sept 30, 2015 Sprenkle - CSCI330 21

CPU busy 25/25: U = 100%
Disk busy 15/25: U = 60%

Estimating Time-to-Yield

® How to predict which job/task/thread will have the
shortest demand on the CPU?
If you don’t know, then guess.
® Weather report strategy: predict future D from the recent past.
® We can “guess” well by using adaptive internal priority.
Common technique: multi-level feedback queue.
Set N priority levels, with a timeslice quantum for each.
If thread’s quantum expires, drop its priority down one level.
® “It must be CPU bound.” (mostly exercising the CPU)
If a job yields or blocks, bump priority up one level.
® “It must be /0 bound.” (blocking to wait for 1/0)

Sept 30, 2015 Sprenkle - CSCI330 22

Example from Linux

Tasks are determined to be I/O-bound or CPU-bound
based on an interactivity heuristic.

A task's interactiveness metric is calculated based on
how much time the task executes compared to how
much time it sleeps.

Note that because I/O tasks schedule I/O and then wait,
an |/O-bound task spends more time sleeping and waiting
for 1/O completion.

This increases its interactive metric.

Sept 30, 2015 Sprenkle - CSCI330 23

Multilevel Feedback Queue

® Many systems (e.g., Unix variants) implement internal
priority using a multilevel feedback queue.
® Multilevel. Separate queue for each of N priority levels.
Use RR on each queue
Look at queue i+1 only if queue i is empty.
® Feedback. Factor previous behavior into new job priority.

1/0 bound jobs

jobs holding resources
jobs with high external priority

GetNextToRun selects job CPU-bound jobs

at the head of the highest
priority queue: constant time, .- .
. Priority of CPU-bound jobs
re
no sorting eady queues decays with system load and

indexed by priority " ved
Sept 30, 2015 Sprenkle - CSC1330 service received. 2

Multilevel Feedback Queue: MFQ

Priority ~ Time Slice (ms) ~ Round Robin Queues
‘:I:II é new or /0
1 10 bound task
2 20 < time slice
C/jexpiration
w [T <

Sept 30, 2015 Sprenkle - CSCI330

SJE

TODO

® Project 1 due Wednesday

Sept 30, 2015 Sprenkle - CSCI330

