Today

® Process Management

Oct 7, 2015 Sprenkle - CSCI330 1

Review

® Bringing scheduling all together

Oct 7,2015 Sprenkle - CSCI330

Processes and Their Threads

virtual address space main thread other threads (optional)

E. 2. o4

Each process has a

virtual address space tiarcer;:f;t?:; tzst;e":la/;; On real systems, a process
(VAS): a private name 8 4 can have multiple threads.
space for the virtual with a stack.

memory it uses. We presume that they can all

If
we say a process does make system calls and block

The VAS is both a something, we really mean

”and a its thread does it. relepamelaiy:
“lockbox”: it limits what
the process can see/do, The kernel can suspend/ @ A&
and protects its data restart a thread wherever
from others. and whenever it wants.
Oct 7, 2015 Sprenkle - CSCI330 3

Sheep Analogy

Oct7,2015 Sprenkle - CSCI330

All Together Now

® A process is a running program
A running program (a process) has at least one thread (“main”)
It may (optionally) create other threads.
Threads execute the program (“perform the script”).
Threads execute on the “stage” of the process virtual memory,
with access to a private instance of the program’s code and data.

A thread can access any virtual memory in its process but is
contained by the “fence” of the process virtual address space.

Threads run on cores: a thread’s core executes instructions for it.
Sometimes threads idle to wait for a free core or for some event.
Sometimes cores idle to wait for a ready thread to run.

The OS kernel shares/multiplexes the computer’s memory and
cores among the virtual memories and threads.

Oct 7, 2015 Sprenkle - CSCI330 5

Process management

® OS offers system call APIs for managing processes.
Create processes (children)
Control processes
Monitor process execution
“Join”: wait for a process to exit and return a result
“Kill”: send a signal to a process
Establish interprocess communication (IPC: later)
Launch a program within a process

® We study the Unix process abstraction as an

example.

Illustrative and widely used for 40+ years!

Oct7,2015 Sprenkle - CSCI330




Process Management

® The process manager must provide for:
Process creation
Process termination
Process synchronization
Inter-process communication
Process scheduling

Oct 7,2015 Sprenkle - CSCI330 7

Program Perspective

® Programs use system calls to create and manage
processes.
The specific system calls used depend upon the type
of the system.

Oct 7,2015 Sprenkle - CSCI330 8

The essence of Unix process “fork”

Oh Ghost of Walt, please don't sue me.
Oct 7,2015 Sprenkle - CSCI330 9

Sorcerer’s Apprentice Atari Game

Oct7,2015 Sprenkle - CSCI330 10

Review: fork

int pid;

int status = 0; The fork syscall returns

. . twice:

if (pid = fork()) {
* * .
/* parent */ 1. Itreturnsazeroin

1 else { the context of the
/* child */ new child process.
exit(status); 2. Itreturns the new

child process ID (pid)
in the context of the
parent.

Oct 7,2015 Sprenkle - CSCI330 11

Exit and wait

® exit(int rv)
Causes the program to exit with the main method
returning the specified return value (rv).

® e.g. exit(-1);

Reaching the end of the main method results in an
implicit exit(0).

® wait(int *status)
Causes a process to wait until any one of its child
processes has completed.

The waitpid system call can be used to wait for a specific
child process to complete.

status is loaded with the return value from the child’s call
to exit. Use NULL to discard status.

Oct7,2015 Sprenkle - CSCI330 12




Fork Problem

int mainQ) {
int x = 27;
int pid = forkQ);
if (pid 1= 0) {
printf("Parent's x before wait is %d\n",x);
X =X+ 5;

wait(NULL);

printf("Parent's x after wait is %d\n",x);
} else {

printf("Child's x before sleep is %d\n",x);

sleep(5);

X = X + 10;
printf("Child's x after sleep is %d\n",x);

Another Fork Program

int main(Q) {
int pid= forkQ);
int 1i;
if (pid '=0 ) {
for(i=0; i<10; i++) {
printf("Parent process %d running.\n", getpid());
sleep(1);

wait(NULL);
else {

for(i=0; i < 10; i++) {
printf("Child process %d running.\n", getpid());

sleep(1);
} .
3 getpid syscall:
} Get process|D of
current process.
Oct 7, 2015 Sprenkle - CSCI330 14

Process 15220 exiting.
Process 15209 exiting.
Process 15232 exiting.

A simple program: sixforks

s Jsixforks Process 15223 exiting.
Process 15191 exiting. Process 15210 exiting.

o . . P 15200 exiti Process 15234 exiting.
int main(int argc, char* arqﬁi:{iesz?u?g Process 15228 exiting,

N rocess 15194 exiting. Process 15192 exiting.

;0 rkQ; Froces 19107 exitg process 15230 exting.

. ss exitin Process 15211 exiting.

ork(); Process 15193 exiting. Process 15227 exiting.

fork(Q; Process 15198 exiting Process 15239 exiting.

’ Process 15215 exiting. Process 15231 exiting

fork(); ::’“"'55 15217 exiting, Process 15242 exiting.

rocess 15218 exiting,

fork(Q; Process 15203 exiting. Process 15243 exiting.

. $ Process 15212 exiting. Process 15240 exiting
forkQ; Process 15196 exiting. Process 15236 ex
. " s 16222 exiting. Process 15241 ex

printf("Process %d exiti nsiﬁiihsm exiting. Process 15244 exiting.

3 . Process 15221 exiting. Process 15247 exiting.

getpl d () ) > Process 15224 exiting. Process 15235 exiting.

} Process 15206 exiting.
Process 15216 exiting.
Process 15205 exiting.
Process 15207 exiting.
Process 15201 exiting.
Process 15214 exiting.
Process 15225 exiting.
Process 15199 exiting.
Process 15226 exiting.
Process 15208 exiting.
Process 15229 exiting.

Oct7,2015 Sprenkle - CSCI330

Process 15245 exiting.
Process 15250 exiting.
Process 15248 exiting.
Process 15249 exiting.
Process 15204 exiting.
Process 15238 exiting.
Process 15251 exiting.
Process 15237 exiting.
Process 15252 exiting.
Process 15253 exiting.
Process 15246 gyiting.
Process 15254 &xiting.

Oct 7, 2015 Sprenkle - CSCI330 13
A simple program: sixforks
.{nt main(int argc, char* argv) {
fork(Q);
forkQ; How many processes are
fork(); / created by these six forks?
fork(Q);
fork(Q);
fork(Q);
printf("Process %d exiting.\n”, getpid());
}
Oct 7, 2015 Sprenkle - CSCI330 15
Project 2
® System Calls
Interrupts
® Due in 2 weeks
Oct 7, 2015 Sprenkle - CSCI330 17

Exceptions: trap, fault, interrupt

unintentional
contributing factors

intentional
happens every time

A 3 3 invalid or protecte
Ca#z:%?goin write, fork, exec, exit, address or opcode, page
wait, kill, etc. fault, overflow, etc.
asynchronous “software interrupt” interrupt

caused by some
other event

software requests an caused by an external
interrupt to be delivered event: I/O op completed,
at a later time clock tick, power fail, etc.

Oct7,2015 Sprenkle - CSCI330 18




Looking Ahead

® Process Communication
® Storage

® Midterm next Wednesday
Post a midterm prep document
More on the types of questions

Oct 7, 2015 Sprenkle - CSCI330 19




