Today

• Interprocess Communication Mechanisms

Oct 9, 2015

Sprenkle - CSCI330

Review

- What guarantees do we have about the order of parent and children processes' execution?
- How do we make a thread stop until its child process finishes?

Oct 9, 2015

Sprenkle - CSCI330

Interprocess Communication

- Independent process cannot affect or be affected by the execution of another process
- Cooperating process can affect or be affected by the execution of another process
- Advantages of process cooperation
 - Information sharing
 - Computation speed-up
 - > Modularity
 - Convenience

Oct 9, 2015

Sprenkle - CSCI330

Producer-Consumer Problem

- Paradigm for cooperating processes
- *producer* process produces information that is consumed by a *consumer* process

Oct 9, 2015

Sprenkle - CSCI330

Interprocess Communication Mechanisms

 Cooperating processes need interprocess communication (IPC)

What are ways to allow the processes to communicate?

Oct 9, 2015

Sprenkle - CSCI330

Interprocess Communication Mechanisms

- Interprocess communication (IPC)
 - ➤ Shared Memory IPC
 - ➤ Message Passing IPC
 - ▶ Pipe IPC
 - Sockets

Oct 9, 2015

Sprenkle - CSCI330

Interprocess Communication: Shared Memory

- An area of memory shared among the processes that wish to communicate
- The communication is under the control of the users processes not the operating system.
- Major issues is to provide mechanism that will allow the user processes to *synchronize* their actions when they access shared memory.

Oct 9, 2015 Sprenkle - CSCI330 7

Interprocess Communication – Message Passing

- Mechanism for processes to communicate and to synchronize their actions
- Message system processes communicate with each other without resorting to shared variables
- IPC facility provides two operations:
 - > send(message)
 - > receive(message)
- The message size is either fixed or variable

Oct 9, 2015 Sprenkle - CSCI330 9

IPC via Message Passing 1. Process A creates a message M. process A 2. Process A uses a send system call to send the process B message to process B. 3. The message is copied into memory in the kernel's address space. 4. Process B uses a receive system call to retrieve the message queue message from A. m₀ m₁ m₂ m₃ ... m_n 5. The message is copied kernel into B's address space.

Sprenkle - CSCI330

IPC via Pipes

- Pipes can be used to connect the output of one program to the input of another program:
- Example:
 - ▶ Is | grep "Fork"
 - ➢ Is | grep "[^*]Demo"
 - ▶ Is | grep "[^*]Demo" | sort -r

Oct 9, 2015 Sprenkle - CSCI330 1

Sockets

Oct 9, 2015

- Connect to a machine and specific port
 - Common ports?
- Use some protocol for communication

Oct 9, 2015 Sprenkle - CSCI330 12

Sockets

- Connect to a machine and specific port
 - ➤ Common ports?
 - 22 : ssh
 - 80: http
- Use some *protocol* for communication
 - > http
 - > soap

Oct 9, 2015

Sprenkle - CSCI330

Tradeoffs

• What are some of the relative advantages and disadvantages of these approaches to IPC?

Oct 9, 2015

Sprenkle - CSCI330

Looking ahead

- Midterm: Wednesday
 - Prep document posted
- Project 2
 - > System Calls
 - Interrupts
 - > Due in 2 Wednesdays
 - > Start on it to help you understand interrupts and system calls
- Monday Office Hours: 3:30-5 p.m.

Oct 9, 2015

Sprenkle - CSCI330

15

13