Today

® |PC Wrap-up
® Threads

Oct 12, 2015 Sprenkle - CSCI330

Review

® What are ways that processes communicate?

Oct 12, 2015 Sprenkle - CSCI330

Tradeoffs

® What are some of the relative advantages and
disadvantages of these approaches to IPC?
Shared memory
Message passing
Pipes
Sockets

Oct 12, 2015 Sprenkle - CSCI330

Tradeoffs Summary

® Communication overhead
Higher with message passing, sockets

® Amount of cooperation/collaboration
Higher with shared memory, pipes

® Amount of protection

Higher with sockets = no direct access

Oct 12, 2015 Sprenkle - CSCI330

THREADS

Oct 12, 2015 Sprenkle - CSCI330

Parallel Execution

® When two or more execution events are being
carried out simultaneously.

® Examples:
A Disk 1/0 and a CPU operation

Several CPU operations on a multiprocessor system

Oct 12, 2015 Sprenkle - CSCI330 6

Concurrent Execution

® \When two or more execution events either
appear to or actually do occur simultaneously.

® A superset of parallel execution

Oct 12,2015 Sprenkle - CSCI330 7

Threads

® Athread is a stream of control....
Executes a sequence of instructions.

Thread identity is defined by CPU register
context (PC, SP, ..., page table base registers,
)

Generally, “context” is the register values
and referenced memory state
® Multiple threads can execute
independently:
They can run in parallel on multiple cores...
® physical concurrency
...or arbitrarily interleaved on some single
core.
® |ogical concurrency

Oct 12, 2015 Sprenkle - CSCI330 8

Threads vs Processes

® Threads executing within the same process share
most of their address space.
® All threads in a process share the same:
Code segment
Data segment
Heap
® Each thread must have its own:
Program counter
Register values
Stack segment (i.e., local variables and parameters)

Oct 12,2015 Sprenkle - CSCI330 9

Threads and the kernel

® Modern operating systems have multi- process
threaded processes.
® A program starts with one main thread,
but once running, it may create more
threads.
® Threads may enter the kernel (e.g., via
syscall).
® Threads are known to the kernel and have
separate kernel stacks, so they can block
independently in the kernel.
Kernel has syscalls to create threads (e.g.,
Linux clone).
Implementations vary.
This model applies to Linux, MacOS-X,
Windows, Android, and pthreads or Java on
those systems.

Oct 12, 2015 Sprenkle - CSCI330 10

VAS
user mode
user space

threads

trap
fault
resume

kernel mode
kernel space

Looks familiar because applies to the
process abstraction too, or,
A t h rea d more precisely, to a
process’s main thread.

sleep wakeup
wait signal

i

When a thread is blocked,
its TCB is placed on a sleep queue
of threads waiting for a specific
wakeup event.

Oct 12,2015 Sprenkle - CSCI330 11

Java Threads: The Basics

® Extend the Java Thread class.

class MyThread extends Thread {
public void run(Q) {

// do task: your code here
}
1

Thread t1 = new MyThread();
tl.startQ);

Oct 12, 2015 Sprenkle - CSCI330 12

Thread Methods

start Causes this thread to begin execution;
the Java Virtual Machine calls the run
method of this thread.

yield() A hint to the scheduler that the current
thread is willing to yield its current use of
a processor.

join(long Waits at most millis milliseconds for this
millis) thread to die.

Among others....

Oct 12, 2015 Sprenkle - CSCI330 13

Java Threads: The Basics
public class RunnableTask implements Runnable {

public RunnableTask(..) {
// save any arguments or input for the task (optional)

}

@0verride
public void runQ) {
// required to implement for Runnable interface

RunnableTask task = new RunnableTask();
Thread t1 = new Thread(task, "threadl");
tl.startQ;

Oct 12, 2015 Sprenkle - CSCI330 14

Example: Jabber

class Jabber implements Runnable {
String str;
public Jabber(String s){ str =s; }
public void runQ) {
while (true) {
System.out.print(str);
System.out.printin();
H
} public class JabberTest {
} public static void main(String[] args) {
Jabber j = new Jabber("1");
Jabber k = new Jabber("2");
Thread t = new Thread(j);
Thread u = new Thread(k);
t.startQ;
u.startQ);

Oct 12, 2015 } Sprenkle - CSCI330 15

Looking Ahead

® Wednesday:
Midterm

® Two Wednesdays
Project 2 due

® Monday
Challenges in multi-threaded programming
Synchronizing threads

Oct 12, 2015 Sprenkle - CSCI330 16

