Today

® Threads
Multithreaded programming
Thread Pools

® Concurrency Problems

Oct 19, 2015 Sprenkle - CSCI330

Review

® How are threads similar to yet different from
processes?

Oct 19, 2015 Sprenkle - CSCI330 2

Review: Threads vs Processes

® Threads executing within the same process share
most of their address space.
® All threads in a process share the same:
Code segment
Data segment
Heap
® Each thread must have its own:
Program counter
Register values
Stack segment (i.e., local variables and parameters)

Oct 19, 2015 Sprenkle - CSCI330 3

Single and Multithreaded Processes

‘ code H data H files ‘ ‘ code H data H files

‘regislers‘ ‘ stack ‘ ‘regislers‘ ‘registers‘ ‘regislers‘

‘ stack H stack H stack

thread ——> ; ? g g—— thread

single-threaded process multithreaded process

Oct 19, 2015 Sprenkle - CSCI330 4

Shared Address Space Code Example

Consider: how are threads and
processes with shared memory different?

Oct 19, 2015 Sprenkle - CSCI330

Multithreading vs Alternatives

® Anything that can be done with a multithreaded
program can also be done:
With a single-threaded program
With cooperating processes and IPC

How will the multithreaded version
compare to these alternatives?

Oct 19, 2015 Sprenkle - CSCI330 6

Multithreading Efficiency

® Compared to a single-
threaded version of the
same program, a
multithreaded version
may exhibit
better responsiveness
improved performance

® Compared to an

implementation using
cooperating processes, a
multithreaded
implementation will be

more economical in terms
of system resource usage

more efficient in terms of
execution speed

® Creation

® Context Switching

® Communication

Oct 19, 2015 Sprenkle - CSCI330

Multicore Programming

® Types of parallelism

Data parallelism — distributes subsets of the same
data across multiple cores, same operation on each

Task parallelism — distributing threads across cores,
each thread performing unique operation

Usually implement hybrid of these

® As # of threads grows, so does architectural
support for threading

Oct 19, 2015 Sprenkle - CSCI330 8

MULTITHREADING MODELS

Oct 19, 2015 Sprenkle - CSCI330 9

User Threads and Kernel Threads

® User threads - management done by user-level
threads library, without kernel support
Three primary thread libraries:
® POSIX Pthreads
® Java threads
® Windows threads
® Kernel threads - Supported by kernel
Virtually all general-purpose operating systems,
including Windows, Solaris, Linux, Mac OS X, ...
® Need a relationship between user and kernel
threads

Oct 19, 2015 Sprenkle - CSCI330 10

Many-to-One

® Many user-level threads mapped ; ;
to single kernel thread

;4— user thread
® One thread blocking causes all to
block
® Multiple threads may not run in
parallel on multicore system
because only one may be in kernel PR——
atatime
® Can’t take advantage of multiple
cores = few systems currently use
this model

Oct 19, 2015 Sprenkle - CSCI330 11

One-to-One

® Each user-level thread maps to kernel thread

® Creating a user-level thread creates a kernel
thread

® More concurrency than many-to-one

® Kernel thread creation is expensive

Number of threads per process sometimes restricted
due to overhead

® Examples

Windows, Linux
Solaris 9 and later «—— kel thread
12

Oct 19, 2015 Sprenkle - CSCI330

«— user thread

Many-to-Many Model

® Allows many user-level ; ;
threads to be mapped to ;
many kernel threads
user >= # kernel

;%user thread

® Allows the operating system
to create a sufficient number
of kernel threads

k) «—kemel thread

® Variation: two-level model

Some user threads are
matched to kernel thread
(one-to-one)

Oct 19, 2015 Sprenkle - CSCI330 13

IMPROVING EFFICIENCY

Oct 19, 2015 Sprenkle - CSCI330 14

Multithreaded Server Architecture

(2) create new
(1) request thread to service

Eps— the request
client server thread

(3) resume listening
for additional
client requests

What happens under a large load?

Oct 19, 2015 Sprenkle - CSCI330 15

Multithreaded Server Architecture

(2) create new
(1) request thread to service

npe— the request —
client server thread

(3) resume listening
for additional
client requests

® Under large load, resources used to spawn
threads (requires memory and CPU resources)
® Could have _lots_ of threads under huge load
Thrashing/competition for resources

Oct 19, 2015 Sprenkle - CSCI330 16

Thread Pools

® Create a number of threads in a pool where the
threads await work

® Advantages:

Usually slightly faster to service a request with an
existing thread than create a new thread

Allows the number of threads in the application(s) to be
bound to the size of the pool

Separating task to be performed from mechanics of
creating task allows different strategies for running task
® Tasks could be scheduled to run periodically

Oct 19, 2015 Sprenkle - CSCI330 17

Thread pool: idealized

(0
Magic elastic worker pool wl?)::(:' o
Resize worker pool to match
incoming request load: create/ / Handle one
destroy workers as needed. i _ request,
dispatch blocking as
s D\ necessary.
Incoming
idle workers request U/ When request
queue is complete,
P return to
Workers wait here for next worker pool.
request dispatch.
Workers could be
processes or threads. \ %
Oct 19, 2015 Sprenkle - CSCI330 18

Event-driven programming

® Event-driven programming is a design
pattern for a thread’s program. ,

The thread receives and handles a
sequence of typed messages or events.
Handle one event at a time, in order.

In its pure form, the thread never blocks,
except to wait for the next event. [] |

Blocks only if no events to handle (idle). events

Program is like a set of handler routines
for the event types.
The thread upcalls the handler to dispatch
or “handle” each event.
A handler should not block: if it does, the

thread becomes unresponsive to events. Dispatch events by invoking
handlers (upcalls).

Oct 19, 2015 Sprenkle - CSCI330 19

But what’s an “event”?

® A system can use an event-driven design pattern to handle
any kind of asynchronous event.
Arriving input (e.g., GUI clicks/swipes, requests to a server)
Notify that an operation started earlier is complete
® E.g., 1/O completion
Subscribe to events published/posted by other threads
Including status of children: stop/exit/wait, signals, etc.
® You can use an “event” to represent any kind of message
that drives any kind of action in the receiving thread.
® But the system must be designed for it, so that operations
the thread requests do not block
The request returns immediately (“asynchronous”) and
delivers a completion event later.

Events vs. Threading

® (Classic Unix system call APIs are blocking

Requires multiple processes/threads to build responsive/efficient
systems.

e Kernel networking and 1/0 stacks are mostly event-driven
interrupts, callbacks, event queues, ...

® Some system call APIs may be non-blocking
Ex: asynchronous /0
notify thread by an event when operation completes

® Modern systems combine events and threading
Event-driven model is natural for GUIs, servers.

But to use multiple cores (every modern system) effectively, we
need multiple threads.

Multi-threading also enables use of blocking APIs without
compromising responsiveness of other threads in the program.
SEDA paper
Oct 19, 2015 Sprenkle - CSCI330 Swing concurrency

THREAD CHALLENGES

Signal Handling

® Signals are used in UNIX systems to notify a process
that a particular event has occurred.
® Asignal handler is used to process signals
Signal is generated by particular event
Signal is delivered to a process
Signal is handled by one of two signal handlers:
® default
® user-defined
® Every signal has default handler that kernel runs
when handling signal
User-defined signal handler can override default
For single-threaded, signal delivered to process

Oct 19, 2015 Sprenkle - CSCI330 23

Signal Handling

® Where should a signal be delivered for multi-
threaded?

® Options:
Deliver the signal to the thread to which the signal
applies
Deliver the signal to every thread in the process
Deliver the signal to certain threads in the process
Assign a specific thread to receive all signals for the
process

® Option chosen depends on the signal

Oct 19, 2015 Sprenkle - CSCI330 24

Scheduler Activations

® Some multithreading models require
communication to maintain the appropriate
number of kernel threads allocated to the
application
® Typically use an intermediate data structure
between user and kernel threads —
lightweight process (LWP) oo
Appears to be a virtual processor on which |
process can schedule user thread to run I
Each LWP attached to kernel thread -
How many LWPs to create?
® Scheduler activations provide upcalls
a communication mechanism from the kernel
to the upcall handler in the thread library

~———user thread

\
) +——kemel thread

Oct 19, 2015 Sprenkle - CSCI330 25

Two threads sharing a CPU

concept o

reality

context
switch

Oct 19, 2015 Sprenkle - CSCI330 26

Non-determinism and ordering
Thread A —@—~ 0~ 0~ 0~ 0—~0—~0—>

~/ 7 J’

Thread ¢ —@r——@~@r——@—0—>
Global ordering =00 00000 00008 >
Time
® Why do we care about the global ordering?
® Why is this ordering unpredictable?

Oct 19, 2015 Sprenkle - CSCI330 27

Non-determinism and ordering
Thread A —@—~ 00— 0—0—0—0—>

7 7)

Thread C —@r—@r-@r—0—0@r—>

Global ordering =00 00000 00008 >
Time
® Why do we care about the global ordering?
Might have dependencies between events
Different orderings can produce different results
® Why is this ordering unpredictable?

Can’t predict how fast processors will run
Oct 19, 2015 Sprenkle - CSCI330

Portrait of a thread

Each thread is represented by a data struct.

We call it a “thread object” or “Thread Control Block”.
It stores information about the thread, and

may be linked into other system data structures.

“Heuristic
Thread E:ontrgl fencepost”: try to
Block (“TCB") detect stack

overflow errors

Storage for context
(register values) —
when thread is not

running.

Each thread also has a runtime stack for its own use. As a running
thread calls procedures in the code, frames are pushed on its stack.

Oct 19, 2015 Sprenkle - CSCI330 29

Non-determinism example

® Thread A: X = y+1;
e Thread B:y = y*2;

® Possible results?
A goes first: x=11and y = 20
B goes first: y =20 and x = 21
® Variable y is shared between threads.

Oct 19, 2015 Sprenkle - CSCI330 30

Another example Looking Ahead

* Two threads (A and B) ® Project 2 due Wednesday
A tries to increment i ® Reading Chapter 4
B tries to decrement i
i=0;
Thread A: Thread B:
while (i < 10){ while (i > -10){
1++; 1--3

print "A done." print "B done."

Oct 19, 2015 Sprenkle - CSCI330 31 Oct 19, 2015 Sprenkle - CSCI330

