Today

® Concurrency Problems
® Synchronization Mechanisms

Oct 21, 2015 Sprenkle - CSCI330

Review

® Why should we considering writing multi-
threaded programs?

Oct 21, 2015 Sprenkle - CSCI330 2

Consider a (Seemingly) Simple Program

x=x+1; x=x+1;
print(x); print(x);

What is the output?

Oct 21, 2015 Sprenkle - CSCI330

Consider a (Seemingly) Simple Program

x=x+1; x=x+1;
print(x); print(x);

What is the output?

Possible outputs:

Oct 21, 2015 Sprenkle - CSCI330 4

Resource Trajectory Graphs

Resource trajectory graphs (RTG) depict the “random walk”
through the space of possible program states.

— _

RTG is useful to depict all possible
executions of multiple threads.

| will draw them for only two threads
because slides are two-dimensional.

RTG for N threads is N-dimensional.

Thread / advances along axis /.

Each point represents one state in the
set of all possible system states.

Oct 21, 2015 Sprenkle - CSCI330

Resource Trajectory Graphs

This RTG depicts a schedule within the space of possible
schedules for a simple program of two threads sharing one core.

Every schedule
oends here.

Blue advances
along the y-axis. The diagonal is an idealized
parallel execution (two cores).
Purple advances

along the x-axis. I
‘\ /

_-¥ontext

L~ switch

s
/
Every schedule —_—
starts here.

Oct 21, 2015 Sprenkle - CSCI330 6

The scheduler chooses the
path (schedule, event
order, or interleaving).

From the point of view of
the program, the chosen
path is nondeterministic.

A race

.‘@\ This is a valid schedule.

But the schedule interleaves the
executions of "x = x + 1”in the two
threads.

The variable x is shared.

This schedule can corrupt the value of
T | L | the shared variable x, causing the
O ; : program to execute incorrectly.

start x=x+1

This is an example of a race: the
behavior of the program depends on
the schedule, and some schedules yield
incorrect results.

Oct 21, 2015 Sprenkle - CSCI330 7

Reading Between the Lines of C

load x, R2 ; load global variable x
add R2, 1, R2 ; increment: x = x + 1
store RZ, x ; store global variable x

O Two threads o

execute this code

load section. xisa

add shared variable.

store

load
. . add

Two executions of this code, so: store
x is incremented by two. ¢/
Oct 21, 2015 Sprenkle - CSCI330 8

Interleaving matters

load x, R2 ; load global variable x
add R2, 1, R2 ; increment: x = x + 1
store R2, x ; store global variable x
load
load
add
add
store
store X

In this schedule, x is incremented only once: last writer wins.
The program breaks under this schedule. This bug is a race.

A race condition is any situation in which
oct 21, 24 the order of execution affects the final result.

Concurrency control

The scheduler (and machine) select :
the execution order of threads o

® Each thread executes a sequence of instructions, but

their sequences may be arbitrarily interleaved.
E.g., from the point of view of loads/stores on memory.

® Each possible execution order is a schedule.

® A thread-safe program must exclude schedules that
lead to incorrect behavior.

® Thread synchronization is the process of imposing
synchronization constraints on otherwise
concurrently executing threads.

Oct 21, 2015 Sprenkle - CSCI330 10

This is not a game.
But we can think of it as a game.

1. You write your program.
L I 2. The game begins when you
submit your program to your
adversary: the scheduler.
3. The scheduler chooses all the
moves while you watch.
r— 4. Your program may constrain
the set of legal moves.

5. The scheduler searches for a
Q legal schedule that breaks
X=x+1

your program.

6. If it succeeds, then you lose
(your program has a race).

7. You win by not losing.

x=x+1

Oct 21, 2015 Sprenkle - CSCI330 11

Discussion

® What do we need to do to prevent these issues?

® \What are techniques you’ve seen that may apply
to this problem?

Oct 21, 2015 Sprenkle - CSCI330 12

Critical Section Problem

® Consider system of n processes {p,, Py, .- Pn.1}

® Each process has critical section segment of code

Process may be changing shared variables, updating
table, writing file, etc.

® When one process is in critical section, no other
may be in its critical section

® Critical section problem is to design protocol to
ensure atomic execution of critical section

Oct 21, 2015 Sprenkle - CSCI330 13

The need for mutual exclusion

The program may fail if the
schedule enters the grey box
(i.e., if two threads execute the
critical section concurrently).

/
The two threads must not both
x=27? operate on the shared global x

X=x+1 Q at the same time”.

X=x+1

Oct 21, 2015 Sprenkle - CSCI330

A Lock or Mutex

® Locks are the basic tools to enforce mutual exclusion in
conflicting critical sections.

® Alock is a special data item in memory. M 5 I

* API methods: Acquire and Release. A
Also called Lock and Unlock. RE-u

® Threads pair calls to Acquire and Release. I R

Acquire upon entering a critical section.
Release upon leaving a critical section.
o Between Acquire/Release, the thread holds the lock.

® Acquire does not pass until any previous holder
releases.

® Waiting locks can spin (a spinlock) or block (a mutex).

Oct 21, 2015 Sprenkle - CSCI330 15

Definition of a lock (mutex)

® Acquire + release ops on lock L are strictly paired.

After acquire completes, the caller holds (owns) the
lock L until the matching release.

® Acquire + release pairs on each lock are ordered.

Total order: each lock L has at most one holder at
any given time.

That property is mutual exclusion; L is a mutex.

ONE LANE
BRIDGE

Oct 21, 2015 Sprenkle - CSCI330 16

Portrait of a Lock in Motion

The program may fail if it
enters the grey box.

A lock (mutex) prevents the
schedule from ever entering
the grey box, ever: both
rL / threads would have to hold the
x=27? same lock at the same time,
X=x+1 s and locks don't allow that.
Aill

Oct 21, 2015 Sprenkle - CSCI330

Handing off a lock

serialized
v (one after the other)
First I go. O =

release\ g8 / N

< facquire’ Q

LA Then you go.

Handoff 4
The nth release, followed by-the (n+1)th acquire

Oct 21, 2015 Sprenkle - CSCI330

Mutual exclusion in Java

® Mutexes are built in to every Java object.

® Every Java object is/has a monitor.
At most one thread may “own” a monitor at any given
time.

® A thread becomes owner of an object’s monitor by
executing an object method declared as synchronized
executing a block that is synchronized on the object

public synchronized void public void increment() {

increment() { synchronized(this) {
X =x+ 1 X =x+ 1
b }
Oct 21, 2015 Sprenkle - CSCI330 19

“Lock it down”

&

context switch Use a lock (mutex) to synchronize
». @\ access to a data structure that is
shared by multiple threads.

A thread acquires (locks) the
designated mutex before operating on

R:|: a given piece of shared data.
X=x+1
The thread holds the mutex. At most
T ALL {..B | one thread can hold a given mutex at a
O B : time (mutual exclusion).
start A x=x+1 R

Thread releases (unlocks) the mutex
when done. If another thread is
waiting to acquire, then it wakes.
The mutex bars entry to the grey box: the threads cannot both hold the mutex.
Oct 21, 2015 Sprenkle - CSCI330 20

Looking Ahead

® Project 3 —two Wednesdays

Oct 21, 2015 Sprenkle - CSCI330 21

