Today

® Concurrency Problems
® Synchronization Mechanisms

Oct 23, 2015 Sprenkle - CSCI330

Review

® What is a problem with multi-threaded
programming?
® How do we solve that problem?

Oct 23, 2015 Sprenkle - CSCI330

Review: Definitions

® Race condition: output of a concurrent program
depends on the order of operations between
threads
® Mutual exclusion: only one thread does a particular
thing at a time
Critical section: piece of code that only one thread can
execute at once
® Lock: prevent someone from doing something

Lock before entering critical section, before accessing
shared data

Unlock when leaving, after done accessing shared data
Wait if locked (all synchronization involves waiting!)
Also called mutex or mutex lock

Review: Locks

® Acquire
wait until lock is free, then take it
®Release
release lock, waking up anyone waiting for it
1. At most one lock holder at a time (safety)
2. If no one holding, acquire gets lock (progress)

3. If all lock holders finish and no higher priority
waiters, waiter eventually gets lock (progress)

Discussion: Why only Acquire/Release?

® The Lock APl seems a little too simple

® Suppose we add a method to a lock, to ask if the
lock is free.
Suppose it returns true. Then what?

Will this code work?

if (p == null) { newP() {
lock.acquireQ); p = new PC.);
p = newP(Q); p.fieldl = ..
lock.release(); p.field2 =

3 return p;

p.method(); }

Will this code work?

if (p == null) { newP() {
lock.acquireQ); p = new PC.);
p = newP(); p.fieldl = ..
lock.release(); p.field2 = ..
} return p;
p.method(); }
No!

p can be written before lock is acquired!

Will this code work?

lock.acquireQ); newP() {

if (p == null) { p = new PC.);
p = newP(Q); p.fieldl =

} p.field2 =

lock.release(Q); return p;

p.method(); }

Assuming: method is thread safe.

Locking a critical section §

The threads may run the critical section in

either order, but the schedule can never
enter the grey region where both threads
execute the section at the same time.

mx->Acquire();
add {||x=x+1;
store || mx->Release(); \

[\ @
\ R

) x=x+1 Q
load : || mx->Acquire();

add | x=x+1; A
S| mx->Release(); 4

CUXEX
A 4] R
Holding a shared mutex prevents competing threads from
entering a critical section protected by the shared mutex (monitor).
At most one thread runs in the critical section at a time.

Oct 23, 2015 Sprenkle - CSCI330 9

Locking a critical section

mx->Acquire();
x=x+1I;
mx->Release();

I\

synchronized -
iali; a ->, .
serialized load ||| mx->Acquire();
add | x=x+1;
istore

atomic
mx->Release();

i

Holding a shared mutex prevents competing threads from
entering a critical section. If the critical section code acquires the
mutex, then its execution is serialized: only one thread runs it at a time.

Oct 23, 2015 Sprenkle - CSCI330 10

How about this?

fload |
add
istore

mx->Acquire();
x=x+1;e B
mx->Release();

Oct 23, 2015 Sprenkle - CSCI330 11

How about this?

fload |
add
istore

The locking discipline is not followed:

purple fails to acquire the lock mx.)

Or rather: purple accesses the variable 7 mx->Acquire();
x through another program section A ad |lx=x+1;@ B
that is mutually critical with B, but ftore mx->Release();

does not acquire the mutex.

°
A locking scheme is a convention that
the entire program must follow.
Oct 23, 2015 Sprenkle - CSCI330 12

How about this?

lock->Acquire();
x=x+1;® A
lock->Release();

floa
add
istore

oad 1| | MX->Acquire();
add |\ x=x+1;0¢ B
store

mx->Release();

Oct 23, 2015 Sprenkle - CSCI330 13

How about this?

lock->Acquire();

add _ .

lock->Release();

This guy is not acquiring the right lock. °

Or whatever. They're not using the

mx->Acquire();
same lock, and that’s what matters.

x=x+1;e B
A locking scheme is a convention that mx->Release();
the entire program must follow.

Oct 23, 2015 Sprenkle - CSCI330 14

Rules for Using Locks

® Lock is initially free
® Always acquire before accessing shared data
structure
Beginning of procedure!
® Always release after finishing with shared data
End of procedure!
Only the lock holder can release
DO NOT throw lock for someone else to release
® Never access shared data without lock
Danger!

Revisiting a (Seemingly) Simple Program

1 = new Lock(Q);

X =35
1.acquireQ); 1.acquireQ);
X=X+1; X=X+1;
print(x); print(x);
l.release(); 1.release(Q);

What is the output?

Oct 21, 2015 Sprenkle - CSCI330 16

Debugging non-determinism

® Requires worst-case reasoning
Eliminate all ways for program to break
® Debugging is hard
Can’t test all possible interleavings
Bugs may only happen sometimes
® Heisenbug
Re-running program may make the bug disappear
Doesn’t mean it isn’t still there!

Oct 23, 2015 Sprenkle - CSCI330 17

Spinlock: a first try

int avail_= 0;

T~
acquir‘e() { Global spinlock variable
while (Cavail == 1)
ASSERT;gqvai'I. —=0); Busy-wait until lock is free.

Spinlocks provide mutual exclusion

avail = 1; among cores without blocking
} = don’t need to context switch
Spinlocks are useful for lightly
release(); . contended critical sections
ASSERT(avail == 1) where there is no risk that a thread is
avail = 0; preempted while it is holding the lock,

i.e., in the lowest levels of the kernel.
Oct 23,2015 Sprenkle - CSCI330 18

Spinlock: what went wrong

Race to acquire.

int avail = 0;
’ Two (or more) cores see s ==

acquire() {
while (avail == 1)
{31

avail = 1;

release();
avail = 0;
}

Oct 23, 2015 Sprenkle - CSCI330 19

We need an atomic “toehold”

® To implement safe mutual exclusion, we need support for
some sort of “magic toehold” for synchronization.
The lock primitives themselves have critical sections to test
and/or set the lock flags.
® Safe mutual exclusion on multicore systems requires some
hardware support: atomic instructions
Examples: test-and-set, compare-and-swap, fetch-and-add.

These instructions perform an atomic read-modify-write of a
memory location. We use them to implement locks.

If we have any of those, we can build higher-level
synchronization objects.

Note: we also must be careful of interrupt handlers....
They are expensive, but necessary.

o« 23 Takeaway: Mutexes are often implemented using hardware >

Atomic instructions: Test-and-Set

Locking and blocking HT

Spinlock::Acquire () { i i
while(held); One example: tsl lltthread T attempts to acquire a lock lthat is busy (held),
held = 1: test-and-set-lock must spin and/or block (sleep) until the lock is free. Ak
; ; A
) (from an old machine) By sle_eplng, T fregs up the core for some other use. o
Just sitting and spinning is wasteful! Riiid
Problem: Wrong
interleaved load/ load 4(SP), R2 ; load “this”) R
test/store. busywait: running
load 4(R2), R3 ; load “held” flag yield
bnz R3, busywait ; spin if held wasn't zero preempt
store #1, 4(R2) ;held =1
) sleep dispatch
Solu_tlon: Right Note: H is the lock
TSL atomically sets load 4(SP), R2 : load “this” holder when T attempts
the flag and leaves | b sywait: wakeupe to acquire the lock.
the old value in a tsl 4(R2), R3 : test-and-set this->held
register. bnz R3, busywait ; spin if held wasn’t zero

Oct 23, 2015

bnz means “branch if not zero”

Sprenkle - CSCI330

‘wait

21 Oct 23, 2015

Sprenkle - CSCI330

Blocking

This slide applies to the process
abstraction too, or, more precisely, to
the main thread of a process.

Locking and blocking

T enters the kernel (via syscall) to block.

@

When a thread is blocked on
a synchronization object,
its TCB is placed on a
sleep queue of threads
waiting for an event on
that object.

Oct 23, 2015

wakeup
signal

blocked

|
000 — 000

sleep queue

ready queue

Sprenkle - CSCI330

Suppose T is sleeping in the kernel to wait for a
contended lock (mutex).

When the lock holder H releases, H enters the kernel !
(via syscall) to wakeup a waiting thread (e.g., T).

runnin

yield
preempt

dispatch

H can block too,
perhaps for some
other resource!

H doesn’t implicitly
release the lock just
because it blocks.

sleep

Sprenkle - CSCI330 24

New Problem: Ping-Pong

Alternate threads working, in pseudocode:

void
PingPong() { o O
while(not done) {

if (blue)

switch to purple;
if (purple)

switch to blue;

1 ‘ How would we implement using locks?

Oct 23, 2015 Sprenkle - CSCI330 25

Ping-Pong with Mutexes?

void

PingPong() { o O

while(Cnot done) {
Mx->Acquire();

Mx->Release(); This solution doesn’t work.

Why?

Oct 23, 2015 Sprenkle - CSCI330 26

Mutexes don’t work for ping-pong

Mutexes can’t ensure
alternating between
the threads.
Ex: Blue could take
two turns before
Purple gets a turn.

Oct 23, 2015 Sprenkle - CSCI330 27

Looking Ahead

® Project 2 due in two Wednesdays

® Extra slides next, to help your understanding

Oct 23, 2015 Sprenkle - CSCI330 28

Sleeping in the kernel

Any trap or fault handler may suspend (sleep) the current thread, leaving
its state (call frames) on its kernel stack and a saved context in its TCB.

101 101

syscall traps faults

000 — 000

sleep queue ready queue

interrupts

A later event/action (such as an interrupt or code running on some other
thread) may wakeup the sleeping thread.

Oct 23, 2015 Sprenkle - CSCI330 29

