Today

® Concurrency Problems
Producer Consumer

® Synchronization Mechanisms
Condition Variables

Oct 26, 2015 Sprenkle - CSCI330

Review

® What is the API for locks/mutexes?
® How are mutexes implemented?
® What are some rules for using locks in programs?
® What is the difference between a spinlock and a
blocking lock?
When would you use one vs the other?
® Not losing the forest for the trees:

Why do we cover concurrency and synchronization
inan OS class?

Oct 26, 2015 Sprenkle - CSCI330 2

New Problem: Ping-Pong

Alternate threads working, in pseudocode:

void
PingPong() { o O
while(not done) {

if (blue is running)
switch to purple;

if (purple is running)
switch to blue;

How would we implement using locks?

Oct 26, 2015 Sprenkle - CSCI330 3

Incorrect Solution

lock = new Lock(Q);
We (at the program

level) can’t literally do

id PingP
Vot ingPong() { the switch/handoff.

lock.acquireQ);
if (blue) {
switch to purple

lock.release(); but we only have locks
(so far) ...

It's what we want to do,

}
if 1
' (p:vr\‘lr'ftih)tg blue (Also, need to be careful

lock.release(); about where the release
} ’ ’ is placed.)

Oct 26, 2015 Sprenkle - CSCI330 4

Revised Incorrect Solution

lock = new Lock(Q);
whichThread = 0;

void PingPong() {
lock.acquire();
if (whichThread == blue) { Made a flag that says
whichThread = purple; whichThread is
switch to purple running
}
if(whichThread == purple) {
whichThread = blue;
switch to blue

But, we (still) can’t
literally do the switch/
handoff.

}
lock.release();

Conclusion:A thread wants to check

ou 2o, if some condition is true before continuing execution

Ping-Pong with Mutexes?

void

PingPong() { o O

while(Cnot done) {
mx.Acquire();

mx.Release(); This solution doesn’t work.

Why?

Oct 26, 2015 Sprenkle - CSCI330 6

Mutexes don’t work for ping-pong

Mutexes can’t ensure
alternating between
the threads.
Ex: Blue could take
two turns before
Purple gets a turn.

Oct 26, 2015 Sprenkle - CSCI330

Waiting for conditions

® Need more general synchronization primitives.
® Need some way for a thread to sleep until some other thread
wakes it up.
Enables explicit signaling over any kind of condition
e.g., changes in the program state or state of a shared resource.
® |deally, threads don’t have to know about each other explicitly.
They should be able to coordinate around shared objects.

States and
transitions for
thread T1

Oct 26, 2015 Sprenkle - CSCI330 8

Condition variables

® Condition variable (CV): Data structure to allow
thread to check if some condition is true before
continuing execution
Allows waiting inside a critical section
® CV API
wait: block until condition becomes true
signal: signal that the condition is true
® also called notify
® Wake up one waiting thread
May also define a broadcast (notifyAll)
® Signal all waiting threads

Oct 26, 2015 Sprenkle - CSCI330 9

Condition variables’ Mutex

® Every CV is bound to exactly one mutex, which is
necessary for safe use of the CV.

The mutex protects shared state associated with the
condition

Mutex is locked when wait() is called

(A mutex may have any # of CVs bound to it.)

Oct 26, 2015 Sprenkle - CSCI330 10

Condition variable operations

Atomic

put thread on wait queue
go to sleep

Lock always wait (lock) {
held release lock }

// after wake up

Lock always acquire lock
held }

signal O {

Lock usually wakeup one waiter (if any)

held Atomic

Atomic

broadcast) { }

Lock usually wakeup dll waiters (if any)
held }

Oct 26, 2015 Sprenkle - CSCI330 11

Ping-Pong using a condition variable

void
PingPong() { o O
mx.acquire(Q; wait Clock){
Whﬂe.(fwt done) { release lock
while(!myTurn) put thread on wait queue
cv.wait(mx); go to sleep
do stuff; // after wake up

cv.signal); acquire lock

signal Of

mx.release(); wakeup one waiter (if any)

3

Oct 26, 2015 Sprenkle - CSCI330 12

Waiting for conditions

® Use condition variables (CVs) to represent any condition in
your program
Q empty, buffer full, op complete, resource ready...
® Associate the condition variable with the mutex that protects
the state relating to that condition.
CVs are not variables. But you can associate them with whatever
data you want, i.e, the state protected by its mutex.
® A caller of CV wait must hold its mutex
Crucial: a waiter waits on a logical condition and knows that it
won’t change until the waiter is safely asleep.
Otherwise, due to nondeterminism, another thread could change
the condition and signal before the waiter is asleep.
® The waiter would sleep forever: the missed wakeup or wake-up
waiter problem.
® wait atomically releases the mutex to sleep, and reacquires it
before returning.

Oct 26, 2015 Sprenkle - CSCI330 13

CLASSIC PROBLEMS

Oct 26, 2015 Sprenkle - CSCI330

Example: event/request queue

()
We can use a mutex to protect worker
a shared event queue. loop
Lock it down.”
/ handler/ Handle one
) event,
dispatch blocking as
\ s D\ necessary.
. Incoming
« But how will worker threads handler
. event
wait on an empty queue? queue _ When halndler
+ How to wait for arrival of the is complete,
next event?) return to
We need suitable primitives to worker pool.
sleep (block) for a condition and
wakeup when the condition is handl
isfi andier
satisfied.
Oct 26, 2015 Sprenkle - CSCI330 15

Example: event/request queue

(T
We can synchronize an event worker
queue with a mutex/CV pair. loop
Protect the event queue data f handler,
structure itself with the mutex.)
: dispatch
(7 1&X 7 JAN
]|
Incoming
event handler)
Workers wait on the CV for queue
next event if the event queue —\
is empty.
Signal the CV when a new
event arrives.
This is a producer/consumer handler
problem. Sprenkle - CSCI330

Handle one
event,
blocking as
necessary.

When handler
is complete,
return to
worker pool.

Bounded-Buffer Problem

® Have a producer thread creating the items
® Have a consumer thread consuming the items

® Example: Soda machine
Producer adds a soda
Consumer removes a soda

consumer O { producer O {

take a soda from machine add one soda to machine

Oct 26, 2015 Sprenkle - CSCI330 17

Solving producer-consumer

® What are the variables/shared state?
® Locks?
® Mutual exclusion?

® QOrdering constraints?

Oct 26, 2015 Sprenkle - CSCI330

Solving producer-consumer

® \What are the variables/shared state?
Soda machine buffer
Number of sodas in machine (< MaxSodas)
® Locks?
1 to protect all shared state (sodaLock)
® Mutual exclusion?
Only one thread can manipulate machine at a time
® QOrdering constraints?
Consumer must wait if machine is empty (CV hasSoda)

Producer must wait if machine is full (CV hasRoom)

Oct 26, 2015 Sprenkle - CSCI330

Producer-consumer code

consumer O { producer () {
lock lock
take a soda from machine add one soda to machine
unlock unlock

Oct 26, 2015 Sprenkle - CSCI330 20

Producer-consumer code

consumer (O { producer) {
lock lock
wait if empty wait if full
take a soda from machine add one soda to machine

notify (not full) notify (not empty)
unlock unlock

Iterating towards a solution!

More Wednesday!

Oct 26, 2015 Sprenkle - CSCI330 21

Looking Ahead

® More synchronization mechanisms
Semaphores

® More synchronization problems
Dining Philosophers

® Still working through Chapter 5 of text book

® Project 3: next Wednesday

Oct 26, 2015 Sprenkle - CSCI330 22

