Today

® Concurrency Problems
Producer Consumer
® Bounded Buffer
® Pipes
Dining Philosophers

® Synchronization Mechanisms
Condition Variables

Oct 28, 2015 Sprenkle - CSCI330

Review

® \What is a condition variable?
What is its API?
® When do we use a condition variable?

Oct 28, 2015 Sprenkle - CSCI330 2

Review: Ping-Pong using a condition variable

I L]
void o O
PingPong() { wait (lock){ .
mx.acquireC); release lock Atomic
while(not done) { ;:‘,ttf,h;?ﬁﬂpm mart queve
while(!myTurn) // after wake up
cv.wait(mx); acquire lock
do stuff; ¥
cv.signalQ; signal Of

wakeup one waiter (if any)
mx.release();

3

If blue calls cv.signal(),
why doesn’t purple immediately run?

Oct 28, 2015 Sprenkle - CSCI330 3

Bounded-Buffer Problem

® Have a producer thread creating the items
® Have a consumer thread consuming the items

® Example: Soda machine
Producer adds a soda
Consumer removes a soda

consumer () { producer O {

take a soda from machine add one soda to machine

Oct 28, 2015 Sprenkle - CSCI330 4

Solving producer-consumer

® \What are the variables/shared state?
Soda machine buffer
Number of sodas in machine (< MaxSodas)
® Locks?
1 to protect all shared state (sodaLock)
® Mutual exclusion?
Only one thread can manipulate machine at a time
® QOrdering constraints?
Consumer must wait if machine is empty (CV hasSoda)

Producer must wait if machine is full (CV hasRoom)

Oct 28, 2015 Sprenkle - CSCI330

Producer-consumer code

consumer O { producer () {
lock lock
wait if empty wait if full
take a soda from machine add one soda to machine

notify (not full) notify (not empty)
unlock unlock

Oct 28, 2015 Sprenkle - CSCI330 6




Producer-consumer code

consumer () {
sodaLock.acquire()

producer ) {
sodaLock.acquire()

while (nhumSodas == @) { while(numSodas==MaxSodas){
hasSoda.wait(sodalLock) hasRoom.wait(sodalLock)

} o Mx } w2 Mx

take a soda from machine add one soda to machine

hasRoom. signal () hasSoda.signal()
cv2 cv1

sodalock.release() sodaLock.release()

Oct 28, 2015 Sprenkle - CSCI330

>1 Resource, >1 Consumers
The signal should be a broadcast

if the producer can produce more than one resource,
and there are multiple consumers.

consumer () {
sodalLock.acquire()

producer () {
sodalock.acquire()

while (numSodas == @) { while(numSodas==MaxSodas){
hasSoda.wait(sodalLock) hasRoom.wait(sodalLock)
take a soda from machine fill machine with soda
signalChasRoom) broadcast(hasSoda)
sodalLock.release() sodalock.release()

Ot 28,2015 Spremkie ~CSCi330 8

Broadcast vs signal

® Can | always use broadcast instead of signal?
Yes, assuming threads recheck condition
And they should: “loop before you leap”!

Another thread could get to the lock before wait
returns

® Why might | use signal instead?
Efficiency -- May wakeup threads for no good reason

Oct 28, 2015 Sprenkle - CSCI330

Condition Variable Design Pattern

methodThatWaits() { methodThatSignals() {
lock.acquireQ); lock.acquireQ);
// Read/write shared // Read/write shared

// state // state

while C // If testSharedState is
testSharedState()) { // now true
cv.wait(lock); cv.signal(lock);

}

// Read/write shared // Read/write shared

// state // state

lock.releaseQ); lock.release(Q);

3 3

Oct 28, 2015 Sprenkle - CSCI330 10

Summary: Condition Variables

® Condition variable is memoryless
If signal when no one is waiting, no op

® Wait atomically releases lock
What if wait, then release?

What if release, then wait?
wait (lock){

release lock Atomic
put thread on wait queue
go to sleep

// after wake up
acquire lock

Oct 28, 2015 Sprenk.c” £SC1220

Summary: Condition Variables

® When a thread is woken up from wait, it may not
run immediately
Signal/broadcast puts thread on ready (not running)
list
When lock is released, anyone might acquire it

® Benefit: simplifies implementation
Of condition variables and locks
Of code that uses condition variables and locks

Oct 28, 2015 Sprenkle - CSCI330 12




Using Condition Variables

® Document the condition(s) associated with each
CVv.

What are the waiters waiting for?
When can a waiter expect a signal?

® ALWAYS hold lock when calling wait, signal,
broadcast

Condition variable is sync FOR shared state
ALWAYS hold lock when accessing shared state

Oct 28, 2015 Sprenkle - CSCI330 13

Using Condition Variables

® Wait MUST be in a loop -- “Loop before you leap!”
while (needToWait()) {
condition.wait(lock);
3

Another thread may beat you to the mutex.
The signaler may be careless.

® Some thread packages have “spurious wakeups”:
2 threads woken up, though a single signal has taken place
A single CV may have multiple conditions
Signals on CVs do not stack!
® A signal will be lost if nobody is waiting: always check the
wait condition before calling wait.

Oct 28, 2015 Sprenkle - CSCI330 14

Looking Ahead

® More synchronization mechanisms
Semaphores

® More synchronization problems
Dining Philosophers
® Still working through Chapter 5 of text book

® Project 3: next Wednesday

Oct 28, 2015 Sprenkle - CSCI330 15




