Today

® Concurrency Problems
Producer Consumer
® Bounded Buffer
® Pipes
Dining Philosophers

® Synchronization Mechanisms

Condition Variables

Oct 30, 2015 Sprenkle

€sCI330 1

Review

® \What is a condition variable?

How do we use it?

® Can you always use a broadcast instead of a

signal?

Oct 30, 2015 Sprenkle

€sc1330 2

Producer-consumer code

consumer () {
sodaLock.acquire()

while (nhumSodas == @) {
hasSoda.wait(sodalLock)

} o1 Mx

take a soda from machine

hasRoom. signal ()
cv2

sodalock.release()

Oct 30, 2015 Sprenkle

producer) {
sodaLock.acquire()

while(numSodas==MaxSodas){
hasRoom.wait(sodalLock)

} w2 Mx

add one soda to machine

hagé?da.51gnal()

sodalLock.release()

€sCI330 3

One CV: inefficient producer-consumer

consumer) {
sodalLock.acquire()
while (numSodas == @) {
cv.wait(sodalock)

take a soda from machine
cv.signal(Q)
sodalLock.release()

1

producer () {
sodaLock.acquire()
while(numSodas==MaxSodas){
cv.wait(sodalLock)

add one soda to machine
cv.signalQ)
sodalLock.release()

Consider the scenario:
» 0 sodas
* 2 consumers wait

* 1 producer adds a soda, signals

What could happen?

Oct 30, 2015 Sprenkle

€sc1330 a

One CV: inefficient p

roducer-consumer

consumer (O {
sodalLock.acquire()
while (numSodas == @) {
cv.wait(sodalLock)

take a soda from machine
cv.signal(Q)
sodaLock.release()

producer) {
sodaLock.acquire()
while(numSodas==MaxSodas){
cv.wait(sodalock)

add one soda to machine
cv.signalQ)
sodaLock.release()

}
Consider the scenario: A consumer wakes up,
« 0sodas takes a soda > 0 sodas

* 2 consumers wait

Signals, waking up other

« 1 producer adds a soda, signals || consumer

Oct 30, 2015 Sprenkle

Consumer wakes up but
no sodas! (OK because
-/ we have the while loop)

Condition Variable Design Pattern

methodThatWaits() {
lock.acquireQ);
// Read/write shared
// state

while (

testSharedState()) {

cv.wait(lock);

3

// Read/write shared
// state
lock.releaseQ);

Oct 30, 2015 Sprenkle

methodThatSignals() {
lock.acquireQ);
// Read/write shared
// state

// If testSharedState is
// now true
cv.signal(lock);

// Read/write shared
// state
lock.release();

3

€sc1330

Summary: Condition Variables

® Condition variable is memoryless
If signal when no one is waiting, no op

® Wait atomically releases lock
What if wait, then release?

What if release, then wait?
wait (lock){
release lock
put thread on wait queue
go to sleep
// after wake up
acquire lock

Atomic

Oct 30, 2015 Sprenkle™¢

Summary: Condition Variables

® When a thread is woken up from wait, it may not
run immediately
Signal/broadcast puts thread on ready (not running)
list
When lock is released, anyone might acquire it

® Benefit: simplifies implementation
Of condition variables and locks
Of code that uses condition variables and locks

Oct 30, 2015 Sprenkle - CSCI330 8

Using Condition Variables

® Document the condition(s) associated with each
CV.
What are the waiters waiting for?
When can a waiter expect a signal?

® ALWAYS hold lock when calling wait, signal,
broadcast
Condition variable is sync FOR shared state
ALWAYS hold lock when accessing shared state

Oct 30, 2015 Sprenkle - CSCI330 9

Using Condition Variables

17

® Wait MUST be in a loop -- “Loop before you leap
while (needToWait()) {
condition.wait(lock);
3
Another thread may beat you to the mutex.
The signaler may be careless.

® Some thread packages have “spurious wakeups”:
2 threads woken up, though a single signal has taken place

A single CV may have multiple conditions
Signals on CVs do not stack!
® A signal will be lost if nobody is waiting: always check the
wait condition before calling wait.

Oct 30, 2015 Sprenkle - CSCI330 10

Soda machine in a computer

BOUNDED BUFFER

Oct 30, 2015 Sprenkle - CSCI330 11

Pipes, again

cmdl | cmd2

O stdout stdin O
stdin stdout

Cmd1 Cmd2

Read/write sys call parameters:
* The file code (file descriptor)
* The pointer to a buffer where the
C1/C2 user pseudocode data is stored (buf).
X The number of bytes to be read
while(! EOF) { from the buffer (nbytes).
read(@, buf, count);
compute/transform data in buf;
write(l, buf, count);

}

Oct 30, 2015 Sprenkle - CSCI330 12

What is shared?
What are the ordering constraints?

Pipes

Kernel-space pseudocode
System call internals to read/write N bytes
from pipe into buffer size B.

read(pipe, buf, N) {
for (i = 0; i<N; i++) {
move one byte from pipe into buf[i];

O stdout stdin O
stdin stdout

Cmd1 Cmd2

Oct 30, 2015 Sprenkle - CSCI330 13

Pipes
read(pipe, buf, N) { * Read N bytes from the pipe
pipeMx.lock(); . into the user buffer named
for (int i = @; i<N; i++) {
while (no bytes in pipe) bybuf.
dataCv.waitQ); = « Think of this code as deep
move one byte from pipe -
into buf[if; inside the read system call
implementation on a pipe.

spaceCV.signal();
gipeMx,unlock(); * The write implementation

is similar.
O stdout stdi O
stdin stdout
Cmd1 Cmd2

Oct 30, 2015 Sprenkle - CSCI330 14

Readers-Writers Problem

® A data set is shared among a number of
concurrent processes
Readers — only read the data set
® do not perform any updates
Writers — can both read and write
® Updates

® Race conditions?

Oct 30, 2015 Sprenkle - CSCI330 15

DINING PHILOSOPHERS

Oct 30, 2015 Sprenkle - CSCI330 16

Dining Philosophers Problem

® N processes share N resources

® Resource requests occur in pairs

w/ random think times i
® Hungry philosopher grabs fork while(true) {
Think();
...and doesn’t let go Eat();

... until the other fork is free +

- and the rice is eaten What happens in the case of 5

philosophers?
What if fewer or more
philosophers?

What is shared?
What are the ordering constraints?

What are my goals for a

0ct 30,2015 serentle S solution?

Looking Ahead

® Project 3 due Wednesday

Oct 30, 2015 Sprenkle - CSCI330 18

