Today

® Concurrency Problems
Dining Philosophers
® Deadlock

Nov 2, 2015 Sprenkle - CSCI330

Review: Pipes

read(pipe, buf, N) { * Read N bytes from the pipe
pipeMx.lock(); . into the user buffer named
for (int i = @; i<N; i++) {
while (no bytes in pipe) bybuf.
dataCv.waitQ); = « Think of this code as deep
move one byte from pipe I
15; inside the read system call

into buf[
implementation on a pipe.

spaceCV.signal();
gipeMx,unlock(); * The write implementation

is similar.
O stdout stdi O
stdin stdout
Cmd1 Cmd2

Nov 2, 2015 Sprenkle - CSCI330 2

Dining Philosophers Problem

® N processes share N resources
® Resource requests occur in pairs
w/ random think times
® Hungry philosopher grabs fork while(true) {
Think();
...and doesn’t let go EatO);

... until the other fork is free +

- and the rice is eaten What happens in the case of 5

philosophers?

What is shared? | |What if fewer or more
What are the ordering constraints? philosophers?

What are my goals for a
Nov 2, 2015 Sprenkle - CSf s0|uti0n?

Our Observations

Nov 2, 2015 Sprenkle - CSCI330 4

Resource Graph or Wait-for Graph

® A vertex for each process and each resource

® |f process A holds resource R, add an arc from R
to A.

A grabs fork 1 /° B grabs fork 2

— 7\~
B

Nov 2, 2015 Sprenkle - CSCI330

Resource Graph or Wait-for Graph

® A vertex for each process and each resource

® |f process A holds resource R, add an arc from R
to A.

e |f process A is waiting for R, add an arc from A to
R.

A grabs fork 1 B grabs fork 2
and and

waits for fork 2. (t j ~ waits for fork 1.
B

Nov 2, 2015 Sprenkle - CSCI330 6

Resource Graph or Wait-for Graph

® A vertex for each process and each resource

® |f process A holds resource R, add an arc from R to
A.

® If process A is waiting for R, add an arc from A to R.

® The system is deadlocked iff the wait-for graph has
at least one cycle.

A grabs fork 1 /0\ B grabs fork 2
and -1 - and

waits for fork 2. \4 j ~ waits for fork 1.
B

Nov 2, 2015 Sprenkle - CSCI330

Deadlock vs. starvation

® A deadlock is a situation in which a set of threads
are all waiting for another thread to move.
But none of the threads can move because they are all
waiting for another thread to do it.
® Deadlocked threads sleep “forever”: the software
“freezes”.
It stops executing, stops taking input, stops generating
output. There is no way out.
® Starvation (also called livelock) is different:

Some schedule exists that can exit the livelock state, and
the scheduler may select it, even if the probability is low.

Nov 2, 2015 Sprenkle - CSCI330 8

RTG for Two Philosophers

R2

Rl

Al

A2
There are really only 9 states we
care about: the key transitions

Al A2 R2 Rl are acquire and release events.

Nov 2, 2015 Sprenkle - CSCI330 9

Two Philosophers Living Dangerously

R2

Rl

Al

A2

Al A2 R2 Rl

Nov 2, 2015 Sprenkle - CSCI330 10

The Inevitable Result

R2

R1
2—{ 1
Y
This is a deadlock state:

There are no legal
Al A2 R2 RI transitions out of it.

Al

A2

Nov 2, 2015 Sprenkle - CSCI330 11

Four Conditions for Deadlock

® Four conditions must be present for deadlock to
occur:

Non-preemption of ownership. Resources are
never taken away from the holder.

Exclusion. A resource has at most one holder.

Hold-and-wait. Holder blocks to wait for another
resource to become available.

Circular waiting. Threads acquire resources in
different orders.

Nov 2, 2015 Sprenkle - CSCI330 12

Not All Schedules Lead to Collisions

® The scheduler+machine choose a schedule, i.e., a
trajectory or path through the graph.

Synchronization constrains the schedule to avoid
illegal states.
Some paths “just happen” to dodge dangerous
states as well.

® What is the probability of deadlock?
How likely is deadlock to occur:

® think times increase?

® number of philosophers and number of resources

(value of N) increases?
Nov 2, 2015 Sprenkle - CSCI330 13

Dealing with Deadlock

1. Ignoreit. Do you feel lucky?

2. Detect and recover. Check for cycles and break them by

restarting activities (e.g., killing threads).

3. Prevent it. Break any precondition.

Keep it simple. Avoid blocking with any lock held.
Acquire nested locks in some predetermined order.
Acquire resources in advance of need; release all to retry.
Avoid “surprise blocking” at lower layers of your program.

4. Avoid it.

Deadlock can occur by allocating variable-size resource
chunks from bounded pools: Google “Banker’s algorithm”.

Nov 2, 2015 Sprenkle - CSCI330 14

Guidelines for Lock Granularity

e Keep critical sections short. Push “noncritical”
statements outside to reduce contention.
® Limit lock overhead. Keep to a minimum the
number of times mutexes are acquired and
released.
Note tradeoff between contention and lock overhead.
® Use as few mutexes as possible, but no fewer.

Choose lock scope carefully: if the operations on two
different data structures can be separated, it may be
more efficient to synchronize those structures with
separate locks.

Add new locks only as needed to reduce contention.
“Correctness first, performance second!”

Nov 2, 2015 Sprenkle - CSCI330 15

Looking Ahead

® Project 3

Nov 2, 2015 Sprenkle - CSCI330 16

