Today

® Synchronization Mechanisms
Semaphores

® Implementation in Java

Nov 6, 2015 Sprenkle - CSCI330

Review

® What is a semaphore?

Nov 6, 2015 Sprenkle - CSCI330 2

Semaphore

® A semaphore is a hidden atomic integer counter
with only increment/up (V) and decrement/down
(P) operations.
Book calls V signal and Pwait
® Decrement blocks iff the count is zero.
® Semaphores handle all of your synchronization
needs with one elegant but confusing abstraction.

VP nesem ], p)
1 P-Down °
if (sem == 0) theuntil av '\
Nov 6, 2015 Sprenkle - CSCI330 3

Basic producer/consumer

empty = Semaphore(1);
full = Semaphore(@);

int buf; int Consume() {
int m;
void Produce(int m) { full.PQ);
empty.PQ; m = buf;
buf = m; empty NQ);
full.NQ; return m;
}

This use of a semaphore pair is called a
split binary semaphore: the sum of the values is always 1
Basic producer/consumer is called rendezvous:
one producer, one consumer, and one item at a time.
It is the same as ping-pong:
producer and consumer access the buffer in strict alternation.
Nov 6, 2015 Sprenkle - CSCI330 4

Prod.-cons. with semaphores

® This time: more than one resource can be stored

® Same before-after constraints
If buffer empty, consumer waits for producer
If buffer full, producer waits for consumer

® What data structures/synchronization
mechanisms should we use?

Nov 6, 2015 Sprenkle - CSCI330

Prod.-cons. with semaphores

Semaphore fullBuffers(®), emptyBuffers(MaxSodas)

consumer ) { producer ) {
// wait for item arrival // wait for empty slot
fullBuffers.PQ) emptyBuffers.PQ)
take one soda out put one soda in

//signal empty slot

// signal item arrival
emptyBuffers.V()

fullBuffers.VQ)

Semaphores give us elegant full/empty synchronization.
Is that enough?

Nov 6, 2015 Sprenkle - CSCI330 6




Prod.-cons. with semaphores

Semaphore fullBuffers(@), emptyBuffers(MaxSodas)

consumer (O { producer O {
// wait for item arrival // wait for empty slot
fullBuffers.PQ) emptyBuffers.PQ
take one soda out put one soda in

//signal empty slot
emptyBuffers.V(Q)

// signal item arrival
fullBuffers.VQ)

We could have two threads accessing the “soda buffer”.

Why wasn’t this an issue in the one-resource version of the
problem?

Nov 6, 2015 Sprenkle - CSCI330

Prod.-cons. with semaphores

Semaphore mutex(l),fullBuffers(@),emptyBuffers(MaxSodas)

consumer ) { producer ) {
fullBuffers.PQ) emptyBuffers.P()
mutex.PQ) mutex.P()
take soda out put soda in
mutex.VQ mutex.VQ)

emptyBuffers.VQ fullBuffers.VQ)

Nov 6, 2015 Sprenkle - CSCI330 8

Prod.-cons. with semaphores

Semaphore mutex(1),fullBuffers(@),emptyBuffers(MaxSodas)

consumer (O { producer O {

mutex.P() o mutex.P() 9

fullBuffers.PQ) emptyBuffers.PQ)
take soda out put soda in
emptyBuffers,V() fullBuffers.VQ)

mutex.V() mutex.VQ)

¥ }
Does the order of the down calls matter?
Yes. Can cause “deadlock.”

Nov 6, 2015 Sprenkle - CSCI330

Prod.-cons. with semaphores

Semaphore mutex(l),fullBuffers(@),emptyBuffers(MaxSodas)

consumer ) { producer ) {
fullBuffers.PQ) emptyBuffers.P()
mutex.PQ mutex.PQ)
take soda out put soda in

emptyBuffers.V() fullBuffers.VQ)

mutex.VQ mutex.V()
} }

Does the order of the up calls matter?
Not for correctness, possible efficiency issues.

Nov 6, 2015 Sprenkle - CSCI330 10

Prod.-cons. with semaphores

Semaphore mutex(1),fullBuffers(@),emptyBuffers(MaxSodas)

consumer (O { producer O {
fullBuffers.PQ) emptyBuffers.PQ
mutex.P() mutex.P()
take soda out put soda in
mutex.VQ) mutex.V(Q)

emptyBuffers.VQ) fullBuffers.VQ

¥

What about multiple consumers and/or producers?
Doesn’t matter; solution stands.

Nov 6, 2015 Sprenkle - CSCI330 11

Prod.-cons. with semaphores

Semaphore mtx(1),fullBuffers(l),emptyBuffers(MaxSodas-1)

consumer ) { producer ) {
down (fullBuffers) down (emptyBuffers)
down (mutex) down (mutex)
take soda out put soda in
up (mutex) up (mutex)

up (emptyBuffers)
} }
What if 1 available soda and multiple consumers call down?
Only one will see semaphore at 1, rest see at 0.

up (fullBuffers)

Nov 6, 2015 Sprenkle - CSCI330 12




SYNCHRONIZING JAVA CODE

Nov 6, 2015 Sprenkle - CSCI330

Java Synchronization

® Monitors built in to every object, through
inheritance
mutual exclusion (locks)
cooperation (condition variable)
Lock/critical sections with synchronized keyword

® java.util.concurrent classes

Lock
Returns Method Description
void LlockQ) Acquires the lock.
Returns a new Condition instance
Condition newCondition() that is bound to this Lock
instance.
Releases the lock.
void unlock()

https://docs.oracle.com/javase/8/docs/api/java/util/
concurrent/locks/Lock.html

Nov 6, 2015 Sprenkle - CSCI330

Lock

Condition

Semaphore

Nov 6, 2015 Sprenkle - CSCI330 14
Condition API
Returns Method Description
. . Causes the current thread to wait

void await() until it is signalled or interrupted.
void signalQ) Wakes up one waiting thread.

void signalAllQ) Wakes up all waiting threads.

https://docs.oracle.com/javase/8/docs/api/java/util/
concurrent/locks/Condition.html

Nov 6, 2015 Sprenkle - CSCI330

Example Use

final Lock lock = new ReentrantLock();
final Condition notFull = lock.newCondition();
final Condition notEmpty = lock.newCondition();

BoundedBuffer. java

Nov 6, 2015 Sprenkle - CSCI330

Semaphore API

Semaphore(int permits) -
Creates a Semaphore with the given number of permits and
nonfair fairness setting.

Returns Method Description

Acquires a permit from this
semaphore, blocking until one is

void w() available, or the thread is
interrupted.
. Releases a permit, returning it to
void —release() the semaphore.

https://docs.oracle.com/javase/8/docs/api/java/util/
concurrent/Semaphore.html

Nov 6, 2015 Sprenkle - CSCI330




Synchronization Problem

® Consider two threads
threadA generates a value of X

threadB uses the value of X to calculate the value of
Y

® Assume: X=1, Y=0 are stored in the address space
shared by the threads.

® A serialization constraint is necessary in order to
ensure proper execution

Nov 6, 2015 Sprenkle - CSCI330 19

Looking Ahead

® Synchronization assignment
Due Wednesday

® Project 4 — out soon!

Nov 6, 2015 Sprenkle - CSCI330




