Today

® Synchronization Mechanisms
Mutex
Condition Variables
Semaphores
Monitors

Nov 9, 2015 Sprenkle - CSCI330 1

Review

® What are the synchronization mechanisms we
covered?
When would you use them?

® How do we synchronize Java code?

Nov 9, 2015 Sprenkle - CSCI330 2

Synchronization Mechanisms

® Mutex/lock
Mutual exclusion: only one thread can access a
resource at a time

® Signaling mechanisms:
Condition Variable
Semaphore

® Monitor: lock/CV combo

Nov 9, 2015 Sprenkle - CSCI330 3

Java uses mutexes and CVs

Every Java object has a monitor (a mutex and
condition variable) built in.

You don't have to use it, but it’s there. Interchangeable lingo

monitor == mutex+CV
public class Object {
void notify(); /* signal */
void notifyAll(); /* broadcast */
void waitQ);
void wait(long timeout); wait(timeout) waits until timeout
elapses or another thread notifies.

A thread must own an object’s monitor
(synchronized) to call wait/notify.
Otherwise the method raises an
IllegalMonitorStateException.

Nov 9, 2015 Sprenkle - CSCI330 4

Roots: monitors

A monitoris a module in which execution is serialized.
A module is a set of procedures with some private state.

[Brinch Hansen 1973]
[C.AR. Hoare 1974]

At most one thread runs state

in the monitor at a time. P10 o
(enter)

read)
to ent{-’ro o o P20
signal()
. A P3O
Other threads wait until
the monitor is free. P40
wait()

Java synchronized allows finer control over the entry/exit points.
Each Java object is its own “module”: objects of a Java class share
methods of the class but have private state and a private monitor.

Nov 9, 2015 Sprenkle - CSCI330 5

Monitors and mutexes are “equivalent”

® Entry to a monitor (e.g., a Java synchronized block)
is equivalent to Acquire of an associated mutex.
Lock on entry
® Exit of a monitor is equivalent to Release.
Unlock on exit (or at least “return the key”...)
® exit/release is implicit and automatic if the thread
exits synchronized code via an exception.
Much less error-prone then explicit release
Can't “forget” to unlock / “return the key”.
Language-integrated support is a plus for Java.

Nov 9, 2015 Sprenkle - CSCI330 6

Monitors and mutexes are “equivalent”

® Mutexes are more flexible because we can choose which
mutex controls a given piece of state.

E.g., in Java we can use one object’s monitor to control access
to state in some other object.

Perfectly legal! So “monitors” in Java are more properly
thought of as mutexes.
® Caution: this flexibility is also more dangerous!

It violates modularity: can code “know” what locks are held
by the thread that is executing it?

Nested locks may cause deadlock

® Keep your locking scheme simple and local!
Java ensures that each Acquire/Release pair (synchronized
block) is contained within a method, which is good practice.

Nov 9, 2015 Sprenkle - CSCI330 7

Ping-Pong using a condition variable in Java

public void pingPong() {
synchronized (monitor) {
monitor.notify(Q);
try { .
monitor.wait(); wait | _
} catch (InterruptedException e)

cannot acquire

e.printStackTrace(); notify | [,
(signal)
}
¥ wait
Interchangeable lingo: cannot acquire
synchronized == mutex o
¥ Suppose blue
gets the mutex /' notify wait notify
first: its notify
is a no-op.
PingPong. java
Nov 9, 2015 Sprenkle - CSCI330 8

Ping-Pong using a condition variable in Java

public void pingPong() {
synchronized (lock) {
lock.notifyQ;
try { .
lock.waitQ); wait |_
} catch (InterruptedException e)

cannot acquire

e.printStackTrace(); notify| & mutex
(signal)
}
! wait
Interchangeable lingo: cannot acquire
synchronized == mutex mutex
Suppose blue

gets the mutex
first: its notify
is a no-op.

notify wait notify

Nov 9, 2015 Sprenkle - CSCI330 9

Implementing Semaphore

Step 0.
void PO { Increment and decrement operations on
S =5 — 1; a counter.
} But how to ensure that these operations
) are atomic, with mutual exclusion
void VO { and no races?
s=s5+1;

} How to implement the blocking
(sleep/wakeup) behavior of
semaphores?

Nov 9, 2015 Sprenkle - CSCI330 10

Implementing Semaphore

void PO {
synchronized(this) { Step 1.
Use a mutex so that increment
o (V) and decrement (P) operations

1 s=s-1; on the counter are atomic.
}
void VO {
synchronized(this) {
s =5+ 1;
}
}
Nov 9, 2015 Sprenkle - CSCI330 11

Implementing Semaphore

synchronized void PQ) { Step 1 Alternative
Use a mutex so that increment
(V) and decrement (P) operations

s=s-1 on the counter are atomic.

3
synchronized void VO {

s =s+1;

Nov 9, 2015 Sprenkle - CSCI330 12

Implementing Semaphore

synchronized void P() { Step2.
while (s == 0) Use a condition variable to add
wa'i.t() . sleep/wakeup synchronization
t around a zero count.

s=s-1;
}
synchronized void V() {
s =5+ 1;
if (s == 1)
notify(Q);

Nov 9, 2015 Sprenkle - CSCI330 13

Implementing Semaphore

synchronized void PQ) { Loop before you leap!
while (s == 0) Understand why the while is
waitQ); needed, and why an if is not

s =35 - 1.\ good enough.
b
ASSERT(s >= 0);

Wait releases the monitor/mutex
and blocks until a signal.

synchronized void VO {
s =5+ 1;

. 10): e—mm Signal wakes up one waiter blocked
signalQ; in P, if there is one, else the signal

has no effect: it is forgotten.

This code constitutes a proof that monitors
(mutexes and condition variables)
Nov, are at least as powerful as semaphores. 14

Implementing Semaphore

synchronized void PQ) { Loop before you leap!
while (s == 0) Understand why the while is
wait(Q); needed, and why an if is not

s=s5s - 1.\ good enough.
b
ASSERT(s >= 0);

Wait releases the monitor/mutex
and blocks until a signal.

synchronized void VO {
s =5+ 1;

. i Signal wakes up one waiter blocked
signalQ; — in P, if there is one, else the signal

has no effect: it ic faranttan
Book shows how
This code constitutes a proof that monitors monitors can be
(mutexes and condition variables) implemented using
are at least as powerful as semaphores. semaphores, SO ...

Binary Semaphores vs. Mutex

® A binary semaphore is similar to a mutex, but ...

Nov 9, 2015 Sprenkle - CSCI330 16

Binary Semaphores vs. Mutex

® A binary semaphore is similar to a mutex, but ...
® Mutex has an owner

Only the owner can acquire/release the lock
® Semaphores: anyone could release the lock

Nov 9, 2015 Sprenkle - CSCI330 17

Semaphores vs. Condition Variables

® Semaphores are “prefab CVs” with an atomic
integer.

® \/(Up) differs from signal (notify) in that ...?

® P(Down) differs from wait in that ...?

Nov 9, 2015 Sprenkle - CSCI330 18

Semaphores vs. Condition Variables

® Semaphores are “prefab CVs” with an atomic integer.
® V(Up) differs from signal (notify) in that:
Signal has no effect if no thread is waiting on the condition.
® Condition variables are not variables! They have no value!
Up has the same effect whether or not a thread is waiting.
® Semaphores retain a memory of calls to Up.
® P(Down) differs from wait in that:
Down checks the condition and blocks only if necessary.
® No need to recheck the condition after returning from Down.

® The wait condition is defined internally, but is limited to a
counter.

Wait is explicit: it does not check the condition itself, ever.

® Condition is defined externally and protected by integrated
mutex.

Nov 9, 2015 Sprenkle - CSCI330 19

Monitors vs. semaphores

® Monitors

Separate mutual exclusion and wait/signal
® Semaphores

Provide both with same mechanism

® Semaphores are more “elegant”
Can be harder to program

Nov 9, 2015 Sprenkle - CSCI330 20

Monitors vs. semaphores

// Monitors
mutex.lockQ) // Semaphores
semaphore.down()

while (condition) {
cv.wait(mutex)

mutex.unlock()

® Where are the conditions in both?
® Which is more flexible?

® Why do monitors need a lock, but not
semaphores?

Nov 9, 2015 Sprenkle - CSCI330 21

Monitors vs. semaphores

// Monitors
mutex.lockQ) // Semaphores
semaphore.down()

while (condition) {
cv.wait(mutex)

mutex.unlock()

® \When are semaphores appropriate?

When shared integer maps naturally to problem at
hand, when condition involves a count of one thing

Nov 9, 2015 Sprenkle - CSCI330 22

Java Manual

“When waiting upon a Condition, a ‘spurious
wakeup’ is permitted to occur, in general, as a
concession to the underlying platform semantics.
This has little practical impact on most application
programs as a Condition should always be
waited upon in a loop, testing the state predicate
that is being waited for.”

Nov 9, 2015 Sprenkle - CSCI330 23

What does this code do?

blue = Semaphore(1);
purple = Semaphore(1l);

void void
Barrier() { O Barrier() { o
while(Cnot done) { while(Cnot done) {
blue.PQ); purple.PQ;
Compute(); Compute();
purple NQ; blueNQ;
}

Nov 9, 2015 Sprenkle - CSCI330 24

Barrier

blue = Semaphore(l); _— e
purple = Semaphore(1);

void void
Barrier() { O Barrier() { o
while(Cnot done) { whileCnot done) {
blue.PQ; purple.PQ;
Compute(); Compute();
purple NQ); blueNQ;
}
} ¥

Neither thread can advance to the next iteration
until its peer completes the current iteration.

Nov 9, 2015 Sprenkle - CSCI330 25

Barrier with semaphores

Synchronization: layering

Concurrent Applications

Semaphores Locks Condition Variables

Interrupt Disable Atomic Read/Modify/Write Instructions

Multiple Processors Hardware Interrupts

Nov 9, 2015 Sprenkle - CSCI330 27

Vv T
Compute Compute
P Compute Neither thread can advance
to the next iteration
until its peer completes the
v current iteration.
Compute Compute
Compute
P
11
P v P \'/
Compute Compute
Nov 9, 2015 Sprenkle - CSCI330 26
Looking Ahead

® Wed: Synchronization Assignment
® Project 4 out on Wednesday

Nov 9, 2015 Sprenkle - CSCI330 28

