Today

® File Systems
Files

Nov 18, 2015 Sprenkle - CSCI330

Review

® \What is RAID?
What level of RAID should you use?

Nov 18, 2015 Sprenkle - CSCI330

File Systems

® Abstraction on top of persistent storage
Magnetic disk
Flash memory (e.g., USB thumb drive)

® Devices provide

Storage that (usually) survives across machine
crashes

Block level (random) access
Large capacity at low cost
Relatively slow performance

® Magnetic disk read takes 10-20M processor
instructions

Nov 18, 2015 Sprenkle - CSCI330

Names and layers

User view: hotes in notebook file

Application

notefile: fd, byte range*

byte§ File System

device, block #

ﬂ-\ Disk Subsystem

surface, cylinder, sector
Add more layers as needed.

Nov 18, 2015 Sprenkle - CSCI330

I/O Requests to Hardware Operations

® Consider reading a file from disk for a process:

Determine device holding file

Translate name to device representation
Physically read data from disk into buffer
Make data available to requesting process
Return control to process

Nov 18, 2015 Sprenkle - CSCI330

user 1/0 completed,
request 10 provess input data available, or
output completed

Life Cycle
of An
I/O Request

system call return from systam call

transfer data

Kemel
VO subsystem (1t appropriate) o procass,
ratum complation

send request (o device
driver, block process if

Kemel
‘appropria 10 subsystam

process request, issue
commands fo controlle,
configure controler to
block unti Interrupted

detarmine which O
completed, Indicate state
change to 110 subsystem

device
ariver

racalva Interrupt, stora

a In davice-driver buffer

it input, signal to unblock.
davica driver

internpt
device-controller commands I 4

interrupt

device

monttor device, controller

nterupt when 110
completed

1/0 completed,
generate internupt

Nov 18, 2015 time >

The block storage abstraction

® Read/write blocks of size b on a logical storage device (“disk”).

® Adisk is a numbered array of these basic blocks. Each block is
named by a unique number (e.g., logical BLockID).

® CPU (typically executing kernel code) forms buffer in memory
and issues read or write command to device queue/driver.

® Device DMAs data to/from memory buffer, then interrupts the
CPU to signal completion of each request.

® Device I/O is asynchronous: the CPU is free to do something
else while 1/0 in progress.

® Transfer size b may vary, but is always a multiple of some basic
block size (e.g., sector size), which is a property of the device,
and is always a power of 2.

® Storage blocks containing data/metadata are cached in
memory buffers while in active use

called buffer cache or block cache

Nov 18, 2015 Sprenkle - CSCI330

System Performance

® |/O: major factor in system performance:

Demands CPU to execute device driver, kernel 1/0
code

Context switches due to interrupts
Data copying
Network traffic

Nov 18, 2015 Sprenkle - CSCI330 8

Peek behind the curtain

FILES

Nov 18, 2015 Sprenkle - CSCI330

What is a file?

® What does the file represent?
What does it abstract?

® \What is the state and methods associated with a
file?

What are the requirements for the methods?

Nov 18, 2015 Sprenkle - CSCI330 10

File Abstraction

® A (potentially) large amount of information or data
that lives a (potentially) very long time
Often much larger than the memory of the computer
Often much longer than any computation
Sometimes longer than life of machine itself
® (Usually) organized as a linear array of bytes or
blocks
Internal structure is imposed by application
(Occasionally) blocks may be variable length
® (Often) requiring concurrent access by multiple
processes
Even by processes on different machines!

Nov 18, 2015 Sprenkle - CSCI330 11

File = Long-term Information Storage

1. Must store large amounts of data

2. Information stored must survive the
termination of the process using it

3. Multiple processes must be able to access the
information concurrently

Nov 18, 2015 Sprenkle - CSCI330 12

Gap in Perspective of
File Systems and Disks
® User view
File is a named, persistent collection of data

® OS & file system view
File is collection of disk blocks — i.e., a container

File System maps file names and offsets to disk
blocks

Nov 18, 2015 Sprenkle - CSCI330 13

File — a powerful abstraction

® Documents, code
® Databases
Very large, possibly spanning multiple disks
® Streams
Input, output, keyboard, display
Pipes, network connections, ...
® Virtual memory backing store
® Temporary repositories of OS information

® Any time you need to remember something beyond
the life of a particular process/computation

Nov 18, 2015 Sprenkle - CSCI330 14

Fundamental ambiguity
® |s the file the “container of the information” or
the “information” itself?

® Almost all systems confuse the two.

® Almost all people confuse the two.

Nov 18, 2015 Sprenkle - CSCI330 15

Example

® Suppose you email me a document
® later, how do either of us know that we are using
the same version of the document?

® Windows/Outlook/Exchange/MacOS:
Time-stamp is a pretty good indication that they are
Time-stamps preserved on copy, drag and drop,
transmission via e-mail, etc.

® Unix/Linux
By default, time-stamps are not preserved on copy, ftp,
e-mail, etc.
Time-stamp associated with container, not with
information

Nov 18, 2015 Sprenkle - CSCI330 16

Rule of Thumb

® Almost always, people and applications think in
terms of the information

® Many systems think in terms of containers

Professional Guidance: Be aware of the
distinction, even when the system is not

Nov 18, 2015 Sprenkle - CSCI330 17

Definition — File Metadata

® Information about a file

® Maintained by the file system

® Separate from file itself

® Usually attached or connected to the file
E.g., in block # 1

e Some information visible to user/application
Dates, permissions, type, name, etc.

® Some information primarily for OS
Location on disk, locks, cached attributes
® Location is stored in metadata
® |ocation can change, even if file does not
® Location is not visible to user or program

Nov 18, 2015 Sprenkle - CSCI330 18

Attributes of Files

® Name ® Location

® |dentifier pointer to file location on
Unique number identifies device
file within file system ® Size:

® Type: Length in number of bytes;

May be encoded in the occasionally rounded up

name (e.g., .cpp, .txt) ® Protection:
® Dates: Owner, group, etc.

Creation, updated, last Authority to read, update,
accessed, etc. extend, etc.
(Usually) associated with ® |ocks:
container For managing concurrent
Better if associated with access
content

Nov 18, 2015 Sprenkle - CSCI330 19

Example — Location

® Example 1:
mv ~/Project4.pdf ~/public_html/cs330/projects/

® Example 2:
System moves file from disk block 10,000 to disk block 20,000
System restores a file from backup

® May or may not be reflected in metadata

Nov 18, 2015 Sprenkle - CSCI330 20

File Operations

® Create

® Write — at write pointer location
® Read — at read pointer location
® Reposition within file - seek

® Delete

® Truncate

® Open(f)

search the directory structure on disk for entry f, and
move the content of entry to memory

® Close (f)

move the content of entry f; in memory to directory
structure on disk

Nov 18, 2015 Sprenkle - CSCI330 21

Open Files

® Data to manage open files:
Open-file table: tracks open files
File pointer: pointer to last read/write location,
per process that has the file open
File-open count: counter of number of times a file is
open
® Allows removal open-file table entry when last
processes closes it
Disk location of the file: cache of data access
information
Access rights: per-process access mode information

Nov 18, 2015 Sprenkle - CSCI330 22

Representing files: inodes

There are many, many file system implementations.
Most of them use a block map to represent each file.
Each file is represented by a corresponding data object,
which is the root of its block map, and holds other
information about the file (the file’s “metadata”).

In classical Unix and many other systems, this per-file
object is called an inode, “index node”

The inode for a file is stored “on disk”: the OS/FS reads it
in and keeps it in memory while the file is in active use.
When a file is modified, the OS/FS writes any changes to
its inode/maps back to the disk.

Nov 18, 2015 Sprenkle - CSCI330 23

Inodes

A file’s data blocks could be “anywhere” on disk. The file’s inode maps them.
Each entry of the map gives the disk location for the corresponding logical block.

A fixed-size inode)
has a fixed-size attributes - Once upo
block map. n atime
/ninal
How to represent large
files that have more block and far
N far away
logical blocks than can map Inlived t
fit in the inode’s map? 2
he wise
and sage
wizard.
An inode could be “anywhere” on disk. data
How to find the inode for a given file? blocks
Assume: inodes are uniquely numbered: on disk
we can find an inode from its number.
Nov 18, 2015 Sprenkle - CSCI330 24

Classical Unix inode

A classical Unix inode has a set of file attributes in addition to the root
of a hierarchical block map for the file.

The inode structure size is fixed, e.g., total size is 128 bytes: 16 inodes
fit in a 4KB block.

/* Metadata returned by the stat and fstat functions */
struct stat {

dev_t st_dev; /* device */

ino_t st_ino; /* inode */

mode_t st_mode; /* protection and file type */
nlink_t st_nlink; /* number of hard links */

uid_t st_uid; /* user ID of owner */

gid_t st_gid; /* group ID of owner */

dev_t st_rdev; /* device type (if inode device) */
off_t st_size; /* total size, in bytes */

unsigned long st_blksize; /* blocksize for filesystem I/0 */
unsigned long st_blocks; /* number of blocks allocated */

time_t st_atime; /* time of last access */
time_t st_mtime; /* time of last modification */
time_t st_ctime; /* time of last change */

i

Nov 18, 2015 Sprenkle - CSCI330 25

Representing Large Files

inode
Classical Unix file systems
inode == 128 bytes direct
Each inode has 68 bytes of attributes block
and 15 block map entries that are the map
root of a tree-structured block map.

]
(]

l:l indirect
block l:l

(]

Suppose block size = 8KB double
12 direct block map entries: map 96KB of data. indirect
One indirect block pointer in inode: + 16MB of data. block
One double indirect pointer in inode: +2K indirects.

Maximum file size is 96KB + 16MB + (2K*16MB) + ... -
indirect

blocks

The numbers are for illustration only.
Nov 18, 2015 Sprenkle - CSCI330 26

Skewed tree block maps

® |nodes are the root of a tree-structured block map.
® These maps are skewed.

Low branching factor at the root.

“The further you go, the bushier they get.”

Small files are cheap: just need the inode to map it.

® ..and most files are small.

® Use indirect blocks for large files.

Requires another fetch for another level of map block

But the shift to a high branching factor covers most large
files.

® Double indirect blocks allow very large files.

Nov 18, 2015 Sprenkle - CSCI330 27

Looking Ahead

® Project 4
® File systems continuing

File system design
NSF

Nov 18, 2015 Sprenkle - CSCI330 28

