Today

- File Systems
 - > Roles
 - > Structures

Nov 20, 2015

Sprenkle - CSCI330

Review

- What is the role of the file system?
- What information do file systems keep track about files?
 - What data structures do they use to keep track of them?
 - What does Classical Unix use?
- Why does a file system keep track of a file id as well as a name?

Nov 20, 2015

Sprenkle - CSCI330

File System as Illusionist: Hide Limitations of Physical Storage

- Persistence of data stored in file system:
 - Even if crash happens during an update
 - > Even if disk block becomes corrupted
- Naming:
 - Named data instead of disk block numbers
 - Files, directories
 - Directories instead of flat storage
 - Byte addressable data even though devices are block-oriented

Nov 20, 2015

Sprenkle - CSCI330

File System as Illusionist: Hide Limitations of Physical Storage

- Performance:
 - Achieve close to the hardware limit in the average
 - Cached data
 - > Data placement and data structure organization
- Controlled access to shared data

Nov 20, 2015

Sprenkle - CSCI330

Defragmenting

https://en.wikipedia.org/wiki/Defragmentation

Nov 20, 2015

Sprenkle - CSCI330

File System Design Constraints

- For small files:
 - > Small blocks for storage efficiency
 - > Files used together should be stored together
- For large files:
 - ➤ Contiguous allocation for sequential access
 - Efficient lookup for random access
- May not know at file creation whether file will become small or large

Nov 20, 2015

Sprenkle - CSCI330

File System Design

- Data structures
 - Directories: file name -> file metadata
 - Store directories as files
 - > File metadata: how to find file data blocks
 - > Free map: list of free disk blocks
- How do we organize these data structures?
 - ➤ Device has non-uniform performance

Nov 20, 2015

Sprenkle - CSCI330

Design Challenges

- ✓ Index structure
 - > How do we locate the blocks of a file?
- ✓ Index granularity
 - What block size do we use?
- Free space
 - How do we find unused blocks on disk?
- Locality
 - How do we preserve spatial locality?
- Reliability
 - > What if machine crashes in middle of a file system op?

Nov 20, 2015

Sprenkle - CSCI330

File Access

- Seguential access
 - read all bytes/records from the beginning
 - > cannot jump around, could rewind or back up
 - > convenient when medium was magnetic tape
- Random access
 - > bytes/records read in any order
 - > essential for data base systems
 - > read can be ...
 - move file marker (seek), then read or ...
 - read and then move file marker
- Keyed (or indexed) access usually DBs

Nov 20, 2015

Sprenkle - CSCI330

File System Data Structures

- File Descriptor
 - One for every file or directory on the disk is maintained on the disk.
- File Structure
 - > One for each file or directory that is opened by a process.
- Open File ID Table
 - > An array of pointers to all of the Open File Structures.
 - One for the entire system.
- Open File Structure:
 - One for each file or directory that is open.

Nov 20, 2015

Sprenkle - CSCI330

File organization

• How are files typically organized?

Nov 20, 2015

Sprenkle - CSCI330

2

Directory Structures

- Some early OS's supported only a flat directory structure.
- Hierarchical (tree) directory structure allows for directories to be nested inside of other directories.

Nov 20, 2015

Sprenkle - CSCI330

BLOCK ALLOCATION

Nov 20, 2015 Sprenkle - CSCI330

Block Allocation

- When files are created or when they grow, the OS must allocate unused block from the disk to the file.
- Algorithms:
 - Contiguous Allocation
 - Linked List Allocation
 - ➤ File Allocation Tables (FAT)
 - ➤ Indexed Allocation
 - ➤ Multilevel Indexed Allocation

Nov 20, 2015

Sprenkle - CSCI330

Evaluating Allocation Algorithms

- Access Mode
 - > Sequential access performance
 - > Random access performance
- Fragmentation
 - > Internal fragmentation
 - > External fragmentation

Nov 20, 2015

Sprenkle - CSCI330

Contiguous Allocation

- The space for a file is allocated using consecutively numbered blocks.
- File descriptor only needs to store the starting block and the number of blocks in the file.

Nov 20, 2015

Sprenkle - CSCI330

Linked List Allocation

- Files are created with a single block.
- As files grow, the last word in each block stores the address of the next block.

Nov 20, 2015

Sprenkle - CSCI330

File Allocation Tables

- OS maintains a File Allocation Table (FAT) for each disk.
- The FAT has one entry for every disk block.
- File descriptor stores only the starting block of the file.
 - > This is also an index into the FAT.
 - ➤ Entries in the FAT are used as a linked list to find the remaining blocks of the file.

Nov 20, 2015

Sprenkle - CSCI330

CSCI330 19

Indexed Allocation

- With indexed allocation each file descriptor contains a list of the blocks making up the file.
- Multi-level indexed allocation for larger files
- (discussed previously)

Nov 20, 2015 Sprenkle - CSCI330

Tradeoffs?

Nov 20, 2015

Sprenkle - CSCI330

FREE SPACE MANAGEMENT

Nov 20, 2015

Sprenkle - CSCI330

Free Space Management

- The OS must also keep track of which blocks on the disk are not yet allocated to files or used used for directory files (i.e. free blocks).
- Several approaches:
 - Bit vector
 - Linked list
 - Indexed

What are these?
What are their tradeoffs?

Nov 20, 2015

Sprenkle - CSCI330

Approaches to Free Space Management

- Bit Vector:
 - > Free disk blocks can be tracked using a bit vector.
 - Each 0 indicates an allocated block.
 - Each 1 indicates a free block.
- Linked List
 - Free space can also be managed using a linked list scheme.
 - Keep track of each free sector
 - Can be modified to be a linked list of *holes*
- Indexed
 - Unix has used inodes 0 and 1 to track the free blocks on a disk.

Nov 20, 2015

Sprenkle - CSCI330

Tradeoffs?		
Nov 20, 2015	Sprenkle - CSCl330	25

Looking Ahead

- Project 4 due Sunday after break
- Project 5 is coming soon!
 - Processes & Multiprogramming

Nov 20, 2015 Sprenkle - CSCI330 26