
1	

Today	
• Memory	
• Memory	Management	

Nov	30,	2015	 Sprenkle	-	CSCI330	 1	

AbstracBon	
• Separate:	

Ø Interface	from	internals	
Ø SpecificaBon	from	implementaBon	

• AbstracBon	is	a	double-edged	sword	
Ø “Don’t	hide	power.”	

• More	than	an	interface…	
Ø It’s	a	contract	for	how	an	object	is	to	be	used	and	
how	it	is	to	behave,	across	many	variaBons	of	its	
specific	use	and	implementaBon.	

•  We	want	abstracBons	that	are	simple,	powerful,	
efficient	to	implement,	and	long-lasBng.	

Memory	Management	
• Basic	hardware	capabiliBes	

Ø Logical	vs.	Physical	addresses	
Ø Address	binding		

• MulBprogramming	and	Memory	
• Virtual	Memory		

Nov	30,	2015	 Sprenkle	-	CSCI330	 3	

Ties in with Project 5: Processes & Multiprogramming 	

Review:	Memory	Hierarchy	

Memory	Hierarchy	

i7 has >10MB as shared 3rd level cache; 2nd level cache is per-core

Hit Cost: cost to access	 Memory	Management	
• Processor	can	only	directly	use	data	from	registers	

Ø Need	to	move	data	closer	(memory)	
•  Ideally,	programmers	want	memory	that	is	large,	
fast,	&	non	volaBle	

• Memory	hierarchy		
Ø Small	amount	of	fast,	expensive	memory	–	cache		
Ø Some	medium-speed,	medium-price	–	main	memory	
Ø Gigabytes	of	slow,	cheap	disk	storage	–	swap/virtual	
memory	

• MulBprogramming	makes	memory	management	
trickier	

2	

Basic	Hardware	CapabiliBes		
• AssumpBons	about	basic	computer	hardware:		

Ø For	instrucBons	to	be	executed	or	data	to	be	
accessed,	they	must	be	contained	in	main	memory.		

Ø Program	execuBon	generates	a	stream	of	memory	
references	that	are	sent	from	the	CPU	to	the	
memory	management	unit,	controls	access	to	the	
main	memory.		
• Load	address	1000	into	R3	
• Write	R2	to	address	4319		

Nov	30,	2015	 Sprenkle	-	CSCI330	 7	

CPU MMU

Main
Memory

Logical	vs	Physical	Addresses	
• Logical	Addresses:	The	addresses	issued	by	a	
program	to	the	MMU.		

• Physical	Addresses:	Addresses	issued	by	the	
MMU	to	the	main	memory.		

Nov	30,	2015	 Sprenkle	-	CSCI330	 8	

CPU MMU

Main
Memory

Logical
Addresses	

Physical
Addresses	

Memory-Management	Unit	(MMU)	
• MMU	=	Hardware	that	maps	virtual	to	physical	
addresses	

• The	user	program	deals	with	logical	addresses	
Ø never	sees	the	real	physical	addresses	

• At	runBme,	relocaBon	register	added	to	every	
address	generated	by	user	process	before	being	
sent	to	memory	

Dynamic	RelocaBon	Using	RelocaBon	Register	

Absolute	vs.	RelaBve	Programs		
•  In	an	absolute	program	logical	addresses	and	
physical	addresses	are	the	same.	
Ø  i.e.,	program	contains	physical	addresses	
Ø With	respect	to	mulBprogramming:	

•  LimitaBons?		
•  Benefits?		

•  In	a	rela2ve	program	logical	memory	addresses	in	
an	executable	program	are	relaBve	to	some	base	
address	
Ø e.g.,	the	start	of	the	program,	a	segment	register,	etc.	
Ø Requires	hardware	support	

Nov	30,	2015	 Sprenkle	-	CSCI330	 11	

Address	Binding	
• The	process	of	mapping	the	logical	memory	
addresses	contained	in	the	executable	program	
to	the	physical	memory	addresses	where	the	
program	and	data	are	actually	located.		

• Address	binding	techniques	–	differenBated	by	
Bme	
Ø Compile	Bme	
Ø Load	Bme	
Ø Run	Bme		

Nov	30,	2015	 Sprenkle	-	CSCI330	 12	

3	

Binding	of	InstrucBons	and	Data	to	
Memory	
• Timing	of	when	address	binding	can	happen:	

Ø Compile	.me:		If	memory	locaBon	known	a	priori,	
absolute	code	can	be	generated;	must	recompile	
code	if	starBng	locaBon	changes	

Ø Load	.me:		Must	generate	relocatable	code	if	
memory	locaBon	is	not	known	at	compile	Bme	

Ø Execu.on	.me:		Binding	delayed	unBl	run	Bme	if	the	
process	can	be	moved	during	its	execuBon	from	one	
memory	segment	to	another	
• Need	hardware	support	for	address	maps	(e.g.,	base	
and	limit	registers)	

MulBstep	Processing	of	a	User	Program		

stack

heap

globals

Memory	segments:	a	view	from	C	
•  Globals:		

Ø  Fixed-size	segment	
Ø Writable	by	user	program	
Ø May	have	iniBal	values	

•  Text	(instrucBons)	
Ø  Fixed-size	segment	
Ø  Executable	
Ø Not	writable	

•  Heap	and	Stack	
Ø  Variable-size	segments	
Ø Writable	
Ø  Zero-filled	on	demand	

registers

RCX

PC/RIP x
SP/RBP y

segments

text/code

CPU core

RCX – Counter	
RIP – Instruction pointer register	
RBP – Base pointer register	

Heap:	dynamic	memory	

Allocated heap blocks
for structs or objects.

Heap segment.
A contiguous chunk of
memory obtained from

OS kernel.
E.g., with Unix sbrk() syscall

A runtime library obtains the
block and manages it as a

“heap” for use by the
programming language
environment, to store

dynamic objects.

E.g., with Unix malloc and
free library calls.

Heap	abstracBon,	simplified	
1.  User	program	calls	heap	manager	to	allocate	a	block	of	

any	desired	size	to	store	some	dynamic	data.	
2.  Heap	manager	returns	a	pointer	to	a	block.		The	program	

uses	that	block	for	its	purpose.		The	block’s	memory	is	
reserved	exclusively	for	that	use.	

3.  Program	calls	heap	manager	to	free	(deallocate)	the	
block	when	the	program	is	done	with	it.	

4.  Once	the	program	frees	the	block,	the	heap	manager	
may	reuse	the	memory	in	the	block	for	another	purpose.	

5.  User	program	is	responsible	for	iniBalizing	the	block,	and	
deciding	what	to	store	in	it.		IniBal	contents	could	be	old.		
Program	must	not	try	to	use	the	block	aoer	freeing	it.	

0x0!

0x7fffffff!

Static data!

Dynamic data!
(heap/BSS)!

Text!
(code)!

Stack!

Reserved!

VAS	example	(32-bit)	
•  The	program	uses	virtual	memory	

through	its	process’	Virtual	Address	
Space:	
Ø  An	addressable	array	of	bytes…	
Ø  Containing	every	instrucBon	the	process	

thread	can	execute…	
Ø  And	every	piece	of	data	those	

instrucBons	can	read/write…	
•  i.e.,	read/write	==	load/store	on	

memory	
Ø  ParBBoned	into	logical	segments	

(regions)	with	disBnct	purpose	and	use.	
Ø  Every	memory	reference	by	a	thread	is	

interpreted	in	the	context	of	its	VAS.	
•  Resolves	to	a	locaBon	in	machine	

memory	

4	

Heap	blocks	are	conBguous	
The storage in a heap block is contiguous in the Virtual Address Space.
The term block always refers to a contiguous sequence of bytes suitable
for base+offset addressing.

C and other PL environments require this. E.g., C compiler determines
the offsets for named fields in a struct and “bakes” them into the code.

This requirement complicates the heap manager because the heap
blocks may be different sizes (must use Variable Partitioning).

How to pack them into the available space in the heap region?

Variable Partitioning

Variable partitioning is the strategy of parking differently sized cars
along a street with no marked parking space dividers.

Wasted space
external fragmentation

2	

3	

1	

Heap	manager	policy	
• The	heap	manager	must	find	a	suitable	free	block	
to	return	for	each	call	to	malloc().	
Ø No	byte	can	be	part	of	two	simultaneously	allocated	
heap	blocks!				

Ø If	any	byte	of	memory	is	doubly	allocated,	programs	
will	fail.		We	test	for	this!	

• A	heap	manager	has	a	policy	algorithm	to	
idenBfy	a	suitable	free	block	within	the	heap.	
Ø What	should	that	policy	be?	

Heap	manager	policy	
•  The	heap	manager	must	find	a	suitable	free	block	to	return	for	

each	call	to	malloc().	
Ø  No	byte	can	be	part	of	two	simultaneously	allocated	heap	blocks!				
Ø  If	any	byte	of	memory	is	doubly	allocated,	programs	will	fail.		We	

test	for	this!	
•  A	heap	manager	has	a	policy	algorithm	to	idenBfy	a	suitable	

free	block	within	the	heap.	
Ø  Last	fit,	first	fit,	best	fit,	worst	fit	
Ø  Choose	your	favorite!	
Ø  Goals:		

•  be	quick	(first-fit)	
•  use	memory	efficiently	(others)	

Ø  Behavior	depends	on	workload:	paqern	of	malloc/free	requests	
•  This	is	an	old	problem	in	computer	science,	and	it	occurs	in	

many	serngs:	variable	parBBoning.	

Best	fit,	worst	fit,	first	fit	

[http://www.r9paul.org/blog/2008/managing-your-memory/]

Policy	Tradeoff	Discussion	
• First	

• Best	
	
• Worst	

Nov	30,	2015	 Sprenkle	-	CSCI330	 24	

Metrics: Speed, Fragmentation	

5	

Best	fit,	worst	fit,	first	fit	
• People	used	to	study	the	relaBve	merits	of	these	
algorithms	for	variable	parBBoning.		Let’s	not.	

• Which	is	best	at	reducing	fragmentaBon?			
Ø “It	depends.”	
Ø Depends	on	workload:		

•  the	parBcular	paqern	of	requests	(e.g.,	malloc/free)	that	
we	receive.	

•  Sizes	requested	
• Order	of	malloc/free	

•  In	general,	we	won’t	know	the	workload	in	advance,	
and	we	avoid	assumpBons	about	it	that	limit	
generality.	

• But	if	we	do	know	in	advance,	then	we	can	opBmize.	

Looking	Ahead	
• Project	5	

Ø Due	Friday,	Dec		

Nov	30,	2015	 Sprenkle	-	CSCI330	 26	

