Today

® Memory Management

Dec 2, 2015 Sprenkle - CSCI330

Review

® \What does the MMU do?
Why is the MMU needed?

® How can we allocate memory to objects in the
heap?

Dec2, 2015 Sprenkle - CSCI330 2

Review: Memory Management

® Processor can only directly use data from registers
Need to move data closer (memory)
® |deally, programmers want memory that is large,
fast, & non volatile
® Memory hierarchy
Small amount of fast, expensive memory — cache
Some medium-speed, medium-price — main memory
Gigabytes of slow, cheap disk storage — swap/virtual
memory
® Multiprogramming makes memory management
trickier

Dec 2, 2015 Sprenkle - CSCI330

Review: Memory Management Unit

® MMU = Hardware that maps virtual to physical
addresses

® The user program deals with logical addresses
never sees the real physical addresses

® At runtime, relocation register added to every
address generated by user process before being
sent to memory

Dec2, 2015 Sprenkle - CSCI330 4

Review: Variable Partitioning

Variable partitioning is the strategy of parking differently sized cars
along a street with no marked parking space dividers.

o |l Dl]

om0
© 1 -

Wasted space
external fragmentation

Dec 2, 2015 Sprenkle - CSCI330

Review: Dynamic Storage-Allocation Problem

How to satisfy a request of size n from a list of free holes

® First-fit: Allocate the first hole that is big enough

® Next-fit: Allocate the first hole, but start at this position
next time looking for a hole

® Best-fit: Allocate the smallest hole that is big enough;
must search entire list, unless ordered by size. Produces
the smallest leftover hole.

® Worst-fit: Allocate the largest hole; must also search
entire list. Produces the largest leftover hole.

In general, sorting by hole size makes merging neighbors more

expensive after memory is freed.

Dec 2, 2015 Sprenkle - CSCI330 6

CPU Switch From Process to Process

process P, operating system process P,

interrupt or system call

lexecuting
T save state into PCB,
N idle
reload state from PCB,

interrupt or system call executing

. idle
“state” = memory .
reload state from PCB,|
executing][\

Dec 2, 2015 Sprenkle - CSCI330

idle

Purpose of Memory

® Program must be brought into memory and
placed within a process for it to be run

® Subdivide memory to accommodate multiple
processes

® Memory needs to allocated efficiently to pack as
many processes into memory as possible

How do we manage
this automatically?

Dec2, 2015 Sprenkle - CSCI330 8

Big Picture

kernel memory

proc struct
ANEw

kernel stack/u area [§ kernel stack/u area J| kernel stack/u area

Stack

How can we automatically support
multiple programs executing in memory
bec2, 204 at the same time?

One Approach: Swapping

Problem: Total physical memory space of processes
can exceed physical memory

operating ¥/—/
system
@swap out process P,
. process P,
@ swap in
=
= |
user
space backing store

Dec2,2015 Main memory Sprenkle - CSCI330 10

Swapping

® A process can be

swapped temporarily out of memory to a backing

store

then brought back into memory for continued
execution

® Costs of swapping (may be part of context
switch)
Swap time is dominated by transfer time

® Total transfer time is directly proportional to the
amount of memory swapped

Dec 2, 2015 Sprenkle - CSCI330

Swapping
® System maintains a ready queue of ready-to-run

processes that have memory images on disk

® Does the swapped out process need to swap
back in to same physical addresses?

Depends on address binding method

Dec2, 2015 Sprenkle - CSCI330 12

Swapping

Time —>
C c c

N
> @ [} %

BA

D

Operating | | Operating | | Operating | [Operating | | Operating | | Operating | [Operating
system system system system system system system

(a) (b) (© (d) (e) ® (9

® Memory allocation changes as processes come into
memory, leave memory

® Shaded regions are unused memory

Dec 2, 2015 Sprenkle - CSCI330 13

Swapping
} B-Stack
Room for growth |ncerfnd==~§
? fragmerftation} } Room for growth
B-Data
B Actually in use
} B-Program
I | A-Stack
fragr;:: ation ? } Room for growth : } Room for growth
H

But if every program thinks
o it starts at address 0...
— . how does any program execute?

® Allocating space for growing data segment
® Allocating space for growing stack & data segment

Dec2, 2015 Sprenkle - CSCI330 14

Fragmentation

® |Internal Fragmentation

unused memory in a partition
® External Fragmentation

small holes in memory between allocated partitions
® Reduce external fragmentation by compaction

Shuffle memory contents to place all free memory
together in one large block

Expensive, not often performed in practice
® Not always possible; only if relocation is dynamic
Instead, use different allocation scheme to avoid

Dec 2, 2015 Sprenkle - CSCI330 15

Address Relocation

® When program loaded, absolute memory
locations assigned
® A process may occupy different partitions

Thus, different absolute memory locations during
execution

® Separate logical/virtual and physical addresses
OS manages and translates physical
User programs deal with logical/relative

Dec 2, 2015 Sprenkle - CSCI330 16

MMU: Relocation and Protection

® Cannot be sure where program will be loaded in
memory

Address locations of variables and code routines
cannot be absolute

Must keep a program out of other processes’
partitions
® Use base and limit values

Address locations added to base value to map to
physical addr

Address locations larger than limit value is an error

Base and Limit Registers Define
Logical Address Space

Dec 2, 2015 Sprenkle - CSCI330 17

0 z ® Base/relocation register
operating
system Starting address for the
25600 process
process ® Limit register
30004 30004 Ending location of the
rocess
process base p
® These values are set
42094 12090 X
- when the process is
imi
process loaded and when the
88000 process is swapped in
02400

7 csCi330 18

Hardware Support for Relocation and
Limit Registers

Other Memory Allocation Schemes

® Contiguous:
Partitioning - Fixed & Dynamic sizes
With or without swapping
® Non-contiguous
Simple paging
Simple segmentation
® Virtual Memory
Segmentation and/or Paging

Dec2, 2015 Sprenkle - CSCI330 20

limit relocation
register register
logical physical
address address
CPU + memory
no
trap: addressing error
Dec 2, 2015 Sprenkle - CSCI330 19
Partitioning
CONTIGUOUS ALLOCATION
Dec 2, 2015 Sprenkle - CSCI330 21

Contiguous Allocation: Partitions

® Multiple-partition allocation Problem?

Hole — block of available memory

® holes of various size are scattered throughout memory
When a process arrives, it is allocated memory from a
hole large enough to accommodate it

Operating system maintains information about:
a) allocated partitions b) free partitions (hole)

0s 0s 0s 0os
process 5 process 5 process 5 process 5
process 9 process 9
process8 | m— > process 10
process 2 process 2 process 2 process 2
Dec 2, 2p15 Sprenkle - CSCI33)

Partitions: Process Queues

Multiple
input queues 800K
[H+ Partition 4 Partition 4
700K
Partition 3 ~ Single Partition 3
Input queue: input queue
processes
400K
[Partition 2 Smallest available Partition 2
200K partition that will
[HH 1 Partition 1 100K hold the process Partition 1
Operating is selected Operating
system | o system
(a) (b)

Given either fixed or dynamic memory partitions, and

either separate input queues for each partition or single input queue,
which will cause less fragmentation?

Placement Algorithm with Partitions

® Equal-size partitions (fixed)
because all partitions are of equal size, it does not
matter which partition is used

® Unequal-size partitions (dynamic)
Competing goals:
® Minimize waste (fragmentation)
® Minimize overhead (time)

Dynamic storage allocation problem...

Dec2, 2015 Sprenkle - CSCI330 24

Dynamic Storage Allocation Problem

How to satisfy a request of size n from a list of free holes

® First-fit: Allocate the first hole that is big enough

® Next-fit: Allocate the first hole, but start at this position
next time looking for a hole

® Best-fit: Allocate the smallest hole that is big enough;
must search entire list, unless ordered by size. Produces
the smallest leftover hole.

® Worst-fit: Allocate the largest hole; must also search
entire list. Produces the largest leftover hole.

Dec 2, 2015 Sprenkle - CSCI330 25

Fixed Partitioning - Unequal Sizes

® Reduces internal fragmentation

Fixed Partitioning - Equal Size

® Problem: Main memory use is inefficient.
Internal Fragmentation - Part of partition unused

Fixed, equal-sized partitions Operating System
may not work well for an Sl
entire process. 8M
How can we make them better? ‘ Uineed
8M
8 M

Dec 2, 2015 Sprenkle - CSCI330 27

Operating System
8M
e 1 —
6M
8 M
Choosing partition sizes?
8M - based on expected workload
12M
Dec 2, 2015 Sprenkle - CSCI330 26
Segmentation

NON-CONTIGUOUS ALLOCATION

Dec2, 2015 Sprenkle - CSCI330 28

Segmentation

® Supports user view of memory

® A program is a collection of segments
A segment is a logical unit:
subroutine stack

® main program
symbol

table

® Procedure
® Object

main
program

Each has separate purpose

logical address S

Dec 2, 2015 Sprenkle - CSCI330

Logical View of Segmentation

user space physical memory space

Since segments vary in length,
memory allocation is a dynamic storage allocation problem

Dec 2,z0Ts Sprenxre=TsersIU v

Segmentation Architecture

® |ogical address is a tuple:
<segment-number, offset>,
® Segment table
maps two-dimensional physical addresses
each table entry has:
® Segment-table base register (STBR) contains the

starting physical address where the segments reside
in memory

® Segment-table length register (STLR) specifies the
length of the segment
» Acts as the limit

Dec 2, 2015 Sprenkle - CSCI330 31

Logical view of process

VAS example (32-bit) __oxrseseee
. Reserved
® The program uses virtual memory
through its process’ Virtual Address
Spaceg: : Stack
An addressable array of bytes... '
Containing every instruction the process

thread can execute...
And every piece of data those t
instructions can read/write...

® i.e,read/write == load/store on
memory

Dynamic data

> Partitioned into logical segments (heap/BSS)
regions) with distinct purpose and use. -
(regions) purp | Static data
Every memory reference by a thread is
interpreted in the context of its VAS. Text
® Resolves to a location in machine ox
memory (code)

0x0
Dec2, 2015 Sprenkle - CSCI330 32

Paging

NON-CONTIGUOUS ALLOCATION

Dec 2, 2015 Sprenkle - CSCI330 33

Paging Guiding Principle

® |dea: process is allocated physical memory
whenever available

Avoids problem of variable-sized memory chunks
Avoids external fragmentation
® |nternal fragmentation only

Dec2, 2015 Sprenkle - CSCI330 34

Paging

® Partition memory into small equal-size chunks
Chunks of memory are called frames
Size is power of 2, between 512 bytes and 16 Mbytes
® Divide each process into the same size chunks
Chunks of a process are called pages

Operating system maintains a page table for

each process Challenge: relocati
contains the frame location for each process page

memory address = page number + offset

Dec 2, 2015 Sprenkle - CSCI330 35

Using Pages

® Keep track of all free frames

® To run a program of size N pages, need to find N
free frames and load program

® Set up a page table to translate logical to physical
addresses

® Backing store likewise split into pages

Dec2, 2015 Sprenkle - CSCI330 36

Address Translation Scheme

® Address generated by CPU is divided into:

Page number (p) — used as an index into a page table
which contains base address of each page in physical

memory

Page offset (d) — combined with base address to
define the physical memory address that is sent to

the memory unit

Dec 2, 2015

Sprenkle

€sCI330

Paging Model of Logical and

Physical Memory

frame
number

Paging: Example

time
Frame
Number
0 0 A.0 0 A.0
1 1 Al 1 Al
2 2 A2 2 A2
3 3 A3 3 A3
4 4 4 B.0
5 5 5 B.1
6 6 6 B.2
7 7 7
8 8 8
9 9 9
10 10 10
11 11 11
12 12 12
13 13 13
14 14 14
Dec 2, 2015 Sprenkle - CSCI330 39
Page Tables for Example
070 o — 07 of 4 13
1] 1 1| - 1| 8 1| s 14
2 2 2 - 2 9 2 6
3 3 10 3 11 Free Frame List
Process B
4 12
Process C
Process A Process D
Within each process, the memory allocation
is not necessarily in page order: 1
5
2
CsCI330 3

Dec 2, 2015

Sprenkle

page 0 0
page 1 1| page 0
page 2 2
page 3 page table 3| page 2
logical 4| page 1
memory =
5
6
7| page 3
physical
memory
Paging: Example time
0 A.0 0 A.0 0 A.0
1 Al 1 Al 1 Al
2 A2 2 A2 2 A2
3 A3 3 A3 3 A3
4 B.0 4 4
5 B.1 5 5
6 B.2 6 6
7 C.0 7 C.0 7 C.0
8 Gl 8 Gl 8 Gl
9 C.2 9 C.2 9 C.2
10 C3 10 C3 10 C3
11 11 11
12 12 12
13 13 13
14 14 14
Dec 2, 2015 Sprenkle - CSCI330 40
Virtual
Example address
space
Page Table 60K-64K [X
56K-60K X } Virtual page
The relation between saksek | x
virtual addresses 48K-52K | X
and physical ddr-ask | 7
dd 40K-44K [X _—
memory a resses 36K-40K 5 me}:;::;
given by 32K-36K | X address
page table 28K-32K [X A 28K-32K
24K-28K [X 24K-28K
20K-24K [3 20K-24K
Every memory access 16K-20K [4 X 16K-20K
requires 2 lookups: 2ok 0 12K-16K
one in the page table sK12K) 6 8k-12K
and one in memory aKeK| 1 \ 4K-8K
oK-4k [2 0K-4K

Dec 2, 2015

Page frame

TLBs — Translation Lookaside Buffers

Valid | Virtual page | Modified | Protection | Page frame
1 140 1 RW 31
1 20 0 R X 38
1 130 1 RW 29
1 129 1 RW 62
1 19 0 R X 50
1 21 0 R X 45
1 860 1 RW 14
1 861 1 RW 75

® TLB: special, small, fast-lookup hardware cache
used to speed up paging

Dec 2, 2015 Sprenkle - CSCI330 43

Memory Protection

® Memory protection implemented by associating
protection bit with each frame to indicate if read-
only or read-write access is allowed
Can also add more bits to indicate page execute-only,
and so on
® Valid-invalid bit attached to each entry in the page
table:
“valid” indicates that the associated page is in the
process’s logical address space, and is thus a legal page

“invalid” indicates that the page is not in the process’
logical address space

Or use page-table length register (PTLR)
® Any violations result in a trap to the kernel

Page Replacement Algorithms

® Page fault forces choice

make room for incoming page

® Modified page must first be saved
unmodified just overwritten

® Better not to choose an often used page
will probably need to be brought back in soon

Dec 2, 2015 Sprenkle - CSCI330 45

Which page should
which page must be removed | we remove next? |

Optimal Page Replacement Algorithm

® Replace page needed at the farthest point in
future

Optimal but unrealizable

® Estimate by ...
logging page use on previous runs of process
although this is impractical

Dec 2, 2015 Sprenkle - CSCI330 46

Not Recently Used
Page Replacement Algorithm
® Each page has Reference bit, Modified bit
bits are set when page is referenced, modified
® Pages are classified
not referenced, not modified
not referenced, modified
referenced, not modified
referenced, modified
® NRU removes page at random
from lowest-numbered, non-empty class

Dec 2, 2015 Sprenkle - CSCI330 47

TODO

® Project 5 due last day of class

Dec2, 2015 Sprenkle - CSCI330 48

