Today

® Virtual Memory
Optimizations

Dec 7, 2015 Sprenkle - CSCI330

Indirection

SIMPLY EXPLAINED

A tamous aphorism of David Wheeler goes: "All problems

in computer science can be solved by another level of

indirection";"! this is often deliberately mis-quoted with
layer" i for "level of indi

Kevlin Henney's corollary to this is, "...except for the

problem of too many layers of indirection."

INEXT DIRECTION SIG!
18 kKM

INDIRECTION
Dec7,2015 Sprenkle

Review: Memory Management

® |n general, what is the memory abstraction that
the OS provides users?

® How does the OS allow multiprogramming?
® We talked about two main techniques that allow
non-contiguous memory allocation
What is non-contiguous memory allocation?

Why would we want non-contiguous memory
allocation?

What are those two techniques?

Dec 7, 2015 Sprenkle - CSCI330 3

The Big Picture: Virtual Memory

How can the OS build the abstraction of a
private, potentially large address space
for multiple running processes
(all sharing memory)
on top of a single, physical memory?

Dec7,2015 Sprenkle - CSCI330 4

Virtualizing Memory

® | ogical to Physical Address mappings
Running program thinks it’s running at 0
When you print out addresses in programs, those are
the logical addresses
® Protection
A process can only access certain parts of memory
® Swapping
Swap out running processes’ memory

Cost becomes prohibitive as size of process’s
memory increases

Dec 7, 2015 Sprenkle - CSCI330

Review: Noncontiguous Memory

® |dea: if there is available memory, let’s use it!
® Segmentation
Break process’s memory into logical chunks
Base and limit for each offset
® Paging
Partition memory into small equal-size chunks

TLB — keep track of mapping from virtual addresses
to physical addresses

Dec7,2015 Sprenkle - CSCI330 6

Background

® Code needs to be in memory to execute
® Entire program code not needed at same time

® Consider ability to execute partially-loaded
program
How is this possible?
What is the impact?

Dec 7, 2015 Sprenkle - CSCI330 7

Background

® Code needs to be in memory to execute, BUT entire
program rarely used

Error code, unusual routines, larger-than-necessary data
structures

® Entire program code not needed at same time

® Consider ability to execute partially-loaded program

Program no longer constrained by limits of physical

memory

Each program takes less memory while running >

more programs run at the same time

® Increased CPU utilization and throughput with no increase
in response time or turnaround time

Less I/O needed to load or swap programs into memory

-> each user program runs faster

Dec7,2015 Sprenkle - CSCI330 8

Virtual Memory

® |dea: use physical memory to hold only the portions
of each executing process that are currently being
used

Only part of the program needs to be in memory for
execution

Parts of executing process that are not currently being
used are held on secondary storage until needed.

® Impact:

Logical address space can be much larger than physical
address space

Allows address spaces to be shared by several processes
Less I/0 needed to load or swap processes

Dec 7, 2015 Sprenkle - CSCI330 9

Logical view of process

VM Page Maps

Virtual address space —Physical address space
Machine
0x00000000
0x00020000
This picture is an example of o x00000000
a virtual memory on a 32-bit
machine. Details vary.
0x10000000
Global data and dynamic ¢
(“heap”) memory.
!
Akey role of the operating system
is to manage the VM abstraction. T
OXO00ffffff
stack
["] page belonging to process
OXTHFFFFF ["] page not belonging to process
Dec 7, 2015 Sprenkle - CSCI330 11

Virtual Memory __owifsssEes
. Reserved
® Virtual address space
Logical view of how process is Stack
stored in memory
® Usually start at address 0, ‘
contiguous addresses until end
of space t
Physical memory organized in
page frames) Dynamic data
MMU must map logical to (heap/BSS)
physical : -
® Can be implemented via: ~_ Static data
Demand paging Text
Demand segmentation (code)
0x0
Dec 7, 2015 Sprenkle - CSCI330 10
Virtual memory Memory
0
Virtual Page Table 1
irt)
Addresses [110: Addresses
13 ></'
P-1;| N-1

VMs (or segments) are storage objects
described by maps.

A page table is just a block map of one or more
VM segments in memory.

The hardware hides the indirection from user
programs.

Dec 7, 2015 Sprenkle - CSCI330 CMU 15213 o,

Virtual addressing

Code running on a virtual machine ;T:W'ZE;CL“S”;
core addresses memory memory
memory through (big?) (small?) process to access
i ; memory only by a

virtual addresses. valid translation

in the page table.

The machine
translates virtual The OS controls
addresses via an in- the contents of the
memory page table. page table.

The page table represents a functional mapping of
virtual pages (VPNs) to page frames (PFNs) for resident pages.
If a page is not resident in memory,
then its page table entry is marked as invalid.

The specific mechanisms for virtual address translation are machine-dependent.

Dec 7, 2015 Sprenkle - CSCI330 13

Cartoon view of a page table

process page table (map)

This is an example.
Any PFN may be used
for any VPN.

The map itself is just
another data structure
PFN i stored in memory.

offset

VPN #i | offset

virtual address

A protected CPU register
holds the machine address
of the current map.

———1
physical memory
page frames
Virtual page: a logical block in a segment.
VPN: Virtual Page Number (a logical block number).
Page frame: a physical block in machine memory.
PFN: Page Frame Number (a block pointer).
PTE: Page Table Entry (an entry in the block map).
Dec7,2015 Sprenkle - CSCI330 14

Virtual Address Translation

Example only: a typical 32-bit architecture with 4KB pages.

1
virtual address {@ l VPN offset

Virtual address translation maps a
virtual page number (VPN) to a
page frame number (PFN) in

machine memory: the rest is easy.

Deliver fault to OS /
if translation is

not valid and accessible

In requested mode.

Dec 7, 2015 Sprenkle - CSCI330 15

address
translation

Addresses Phil’s Question

Virtual Addressing: Under the Hood
TLB

probe access
TLB valid?

no|(first reference)

access
physical
memory

ra
exception

(lookup and/or)
allocate

frame legal
reference

page on
disk?

illegal
reference

Dec7,2015 Sprenkle - CSCI330 16

Virtual Memory Larger Than
Physical Memory

page 0
page 1 —

j\:’mmm

- EEN

\ mmm
: TSNS ——E B
memory \DDD/

map e

page v physical
memory

virtual

memory
Dec 7,2015 Sprenkle - CSCI330 17

Shared Library Using Virtual Memory

stack stack
shared
shared library pages shared library
heap heap
data data
code code

Two logical pages pointing to same physical page.

Dec7,2015 Sprenkle - CSCI330 18

Demand Paging

® Could bring entire process into
memory at load time
® Or, bring page into memory only

Basic Concepts

® With swapping, pager guesses which pages will be used
before swapping out again
Instead, pager brings in only those pages into memory
How to determine that set of pages?
Need new MMU functionality to implement demand paging
If needed pages are already memory resident,
No difference from non-demand-paging
® |f page needed and not memory resident
Need to detect and load the page into memory from storage
® Without changing program behavior
® Without programmer needing to change code

L]

L]

Dec7,2015 Sprenkle - CSCI330 20

when it is needed = [
Less I/0 needed, no unnecessary 1/0 aogram [‘ swap out o iz 3l
Less memory needed A { o s s% 7
Faster response = 8 s 110
More users = | 12013 J14 15[]
® Similar to paging system with program [{ . e
swapping % J\ swapin Crrheien)
® Page needed = reference to it R
ge ne > -
not-in-memory => bring to memory e
® Lazy swapper: never swaps a page -
into memory unless page will be memory
needed
Swapper that deals with pages is a
pager
Dec 7, 2015 Sprenkle - CSCI330 19
Valid-Invalid Bit
Ly . - Page table snapshot:
® avalid—invalid bit is J P
. . Fi # lid-i lid bit
associated with each page e
table entry v
Vv
V= in—memory— memory v
resident L
i => not-in-memory -
1
® |nitially valid-invalid bit is set i

page table

toion all entries

Dec 7, 2015 Sprenkle - CSCI330 21

Page Table When Some Pages Are Not in
Main Memory

<)
Ooog
g & [
el 5 [e]

5 &
logical

memory e []

valid-invalid
frame bIt
Y

A

0
1

2
3
4
5
6
7
s
9

R

page table

physical memory

Dec7,2015 Sprenkle - CSCI330 22

Page Fault

e |f there is a reference to a page, first reference to
that page will trap to operating system: page fault
® Operating system looks at another table to decide:
Invalid reference = abort
Just not in memory
® Find free frame
® Swap page into frame via scheduled disk operation
® Reset tables to indicate page now in memory
Set validation bit = v

® Restart the instruction that caused the page fault

Dec 7, 2015 Sprenkle - CSCI330 23

Steps in Handling a Page Fault

(3), pageison
(&) backing store

operating
system

reference

page table

instruction|

free frame -

D e
&) @

reset page bring in
table missing page

physical
memory

Dec7,2015 Sprenkle - CSCI330 24

Aspects of Demand Paging

® Extreme case — start process with no pages in memory

0S sets instruction pointer to first instruction of process, non-
memory-resident -> page fault

And for every other process pages on first access
Pure demand paging
® A given instruction could access multiple pages = multiple
page faults
Consider fetch and decode of instruction
® adds 2 numbers from memory and stores result back to memory
Cost decreased because of locality of reference
® Hardware support needed for demand paging
Page table with valid / invalid bit
Secondary memory (swap device with swap space)
Instruction restart

Dec 7, 2015 Sprenkle - CSCI330 25

DEMAND PAGING OPTIMIZATIONS

Dec7,2015 Sprenkle - CSCI330 26

Copy-on-Write

® Allows both parent and child processes to
initially share the same pages in memory
If either process modifies a shared page, only then is
the page copied
® Allows more efficient process creation as only
modified pages are copied

Dec 7, 2015 Sprenkle - CSCI330 27

Before Process 1 Modifies Page C

physical
process, mermory process,

— e]

T pageB —— |

L e e —

Dec7,2015 Sprenkle - CSCI330 28

After Process 1 Modifies Page C

physical
process, memory process,

| pageA -—I_

M| pageB «— |

pageC T
Copy of page C

Dec 7, 2015 Sprenkle - CSCI330 29

What Happens if There is
No Free Frame?
® Used up by process pages
® Also in demand from the kernel, I/0 buffers, etc
® How much to allocate to each?
® Page replacement — find some page in memory,
but not really in use, page it out
Algorithm — terminate? swap out? replace the page?
Performance — want an algorithm which will result in
minimum number of page faults
® Same page may be brought into memory several
times

Dec7,2015 Sprenkle - CSCI330 30

Page Replacement

® Prevent over-allocation of memory by modifying
page-fault service routine to include page
replacement

® Use modify (dirty) bit to reduce overhead of
page transfers — only modified pages are written
to disk

® Page replacement completes separation
between logical memory and physical memory

large virtual memory can be provided on a smaller
physical memory

Dec 7, 2015 Sprenkle - CSCI330 31

Basic Page Replacement

1.Find the location of the desired page on disk

2.Find a free frame
If there is a free frame, use it

If there is no free frame, use a page replacement
algorithm to select a victim frame

Write victim frame to disk if dirty
3.Bring the desired page into the (newly) free
frame; update the page and frame tables

4.Continue the process by restarting the
instruction that caused the trap

Dec7,2015 Sprenkle - CSCI330 32

Page Replacement

frame valid-invalid bit P eT——

swap out

victim
6 change o
0 i \)lomvahd (ﬁpg []
flv Z
@ 1| vietim 7
reset page
table for
P o
desired ‘U
page in
.4

physical
mermory

Dec 7, 2015 Sprenkle - CSCI330 33

Page-Buffering Algorithms

® Keep a pool of free frames, always
Frame available when needed, not found at fault time

Read page into free frame and select victim to evict and add
to free pool

When convenient, evict victim
® Possibly, keep list of modified pages
When backing store otherwise idle, write pages there and set
to non-dirty
® Possibly, keep free frame contents intact and note what is
in them

If referenced again before reused, no need to load contents
again from disk

Generally useful to reduce penalty if wrong victim frame
selected

Dec7,2015 Sprenkle - CSCI330 34

Applications and Page Replacement

o All of these algorithms have OS guessing about
future page access
® Some applications have better knowledge —i.e.
databases
® Memory intensive applications can cause double
buffering
0S keeps copy of page in memory as I/0 buffer
Application keeps page in memory for its own work
® Operating system can given direct access to the disk,
getting out of the way of the applications
Raw disk mode
® Bypasses buffering, locking, etc

Dec 7, 2015 Sprenkle - CSCI330 35

Thrashing

® |f a process does not have “enough” pages,
page-fault rate is very high
Page fault to get page
Replace existing frame
But quickly need replaced frame back
This leads to:
® Low CPU utilization

® Operating system thinking that it needs to increase the
degree of multiprogramming

® Another process added to the system

® Thrashing = a process is busy swapping pages in and
out

Dec7,2015 Sprenkle - CSCI330 36

Demand Paging and Thrashing

® Why does demand paging work?
Locality model
Process migrates from one locality to another

Localities may overlap

® Why does thrashing occur?
2 size of locality > total memory size

Limit effects by using local or priority page
replacement

Dec 7, 2015 Sprenkle - CSCI330

Allocation Summary

® Variable partitioning is a pain
But, we need it for heaps and for other cases (e.g., address
space layout).

® But for files we can break the objects down into “pieces”.

When access to files is through an API, we can add some code
behind that API to represent the file contents with a dynamic
linked data structure (a map).

If the pieces are fixed-size (called pages or logical blocks), we
can use fixed partitioning to allocate the underlying storage,
which is efficient and trivial.

With that solution, internal fragmentation is an issue, but only
for small objects. (Why?)

® That approach can work for VM segments too
have VM hardware to support it since the 1970s

Dec7,2015 Sprenkle - CSCI330 38

Looking Ahead

® Project 5 due Friday
® Exam envelopes — due Friday
® Exam prep document — out later today

Dec 7, 2015 Sprenkle - CSCI330

