Today

® Virtual Memory
Page selection
Prefetching
Allocation
Other issues

Dec9, 2015 Sprenkle - CSCI330 1

Review: Memory Management

® |n general, what is the memory abstraction that
the OS provides users?

® How does the OS allow multiprogramming?
® How does the OS implement virtual memory?

® \What are some optimizations that the OS
provides with respect to virtual memory?

VM Page Maps

Virtual address space —Physical address space

Machine
0x00000000

0x00010000

This picture is an example of o

a virtual memory on a 32-bit
machine. Details vary.

0x00000000

0x10000000

Global data and dynamic ¢
(“heap”) memory.

7/

Dec9, 2015 Sprenkle - CSCI330 2
Virtual memory Memory
0
Page Table 1
Virtual i
Addresses 0] A’:,h ,2'::9,5
13 L
S
P-1;| N-1
VMs (or segments) are storage objects >
described by maps. W
A page table is just a block map of one or more
VM segments in memory.
The hardware hides the indirection from user
programs.
Dec9, 2015 Sprenkle - CSCI330 CMU 15-213 4

Akey role of the operating system T
is to manage the VM abstraction.
OXOOffffff
stack
["] page belonging to process
OXTHFFFFF ["] page not belonging to process
Dec 9, 2015 Sprenkle - CSCI330 3
Virtual addressing
Code running on a virtual machine ;T:WFQZCE'SE
core addresses memory memory
big? 112 process to access
memory through (big?) (small?)

memory only by a
valid translation
in the page table.

virtual addresses.

The machine
translates virtual
addresses via an in-
memory page table.

The OS controls
the contents of the
page table.

The page table represents a functional mapping of
virtual pages (VPNs) to page frames (PFNs) for resident pages.
If a page is not resident in memory,
then its page table entry is marked as invalid.

The specific mechanisms for virtual address translation are machine-dependent.

Dec9, 2015 Sprenkle - CSCI330 5

Cartoon view of a page table

process page table (map)

This is an example.
Any PFN may be used
for any VPN.

The map itself is just
another data structure
PFN i stored in memory.

offset

VPN #i | offset

virtual address

A protected CPU register
holds the machine address
of the current map.

physical memory
page frames
Virtual page: a logical block in a segment.
VPN: Virtual Page Number (a logical block number).
Page frame: a physical block in machine memory.
PFN: Page Frame Number (a block pointer).
PTE: Page Table Entry (an entry in the block map).
Dec9, 2015 Sprenkle - CSCI330 6

Virtual Address Translation

Example only: a typical 32-bit architecture with 4KB pages.

1
virtual address {@ ‘ VPN offset

Virtual address translation maps a
virtual page number (VPN) to a
page frame number (PFN) in

machine memory: the rest is easy.

address
translation

Deliver fault to 0OS /
if translation is
not valid and accessible
in requested mode.
machine address { PEN offset

Dec9, 2015 Sprenkle - CSCI330 7

Addresses Phil’s Question

Virtual Addressing: Under the Hood

MMU
load
TLB

access
valid?

access
physical
memory

raist
exception

zero-fill

no|(first reference)

(lookup and/or)

fetch page on
N H allocate
from disk disk? f
- frame legal illegal
reference reference
Dec9, 2015 Sprenkle - CSCI330 8

Partitioning Summary

® Variable partitioning is a pain
But, we need it for heaps
® For files, we can break objects down into “pieces”.

When access to files is through an API, we can add some
code behind that API to represent the file contents with
a dynamic linked data structure (a map).

If the pieces are fixed-size (called pages or logical blocks),
we can use fixed partitioning to allocate the underlying
storage, which is efficient and trivial.

With that solution, internal fragmentation is an issue, but
only for small objects. (Why?)

® That approach can work for VM segments too
have VM hardware to support it since the 1970s

Dec9, 2015 Sprenkle - CSCI330 9

PAGE CACHING POLICY

Dec9, 2015 Sprenkle - CSCI330 10

Page Caching Policy

® Each thread/process/job makes a stream of
page/block references.
reference string: e.g., abcabcdabce..
® OS tries to minimize number of fetches/faults

Try to arrange for the resident set of blocks to match
the set of blocks that will be needed in the near
future

Dec9, 2015 Sprenkle - CSCI330 11

Page Replacement

® Replacement policy is the key

On each access, select a victim block to evict from
memory

® Read the new block into victim’s frame
1/0 caches are fully associative: a given block can be
anywhere in the cache, so any block is a potential
eviction candidate.
® How do we know which page should be the
“victim”?
Removed from virtual memory
Replaced with another page

® Provably optimal: replace the page whose next reference is
furthest in the future (OPT/MIN)

Dec9, 2015 Sprenkle - CSCI330 12

Policy for selecting a victim

® The oldest block? (FIFO policy)

® The coldest block? (Least Recently Used)

® The hottest block? (Most Recently Used)?

® The least popular block? (Least Frequently Used)
® A random block?

® A block that has not been used recently?

Dec9, 2015 Sprenkle - CSCI330 13

FIFO in Action

Refefrence A B C D E A B C D E A B C D E
1 A A A A E EE E D c
2 B BB B A A A A E D
3 cc c cB BB A E
4 D D DD C C B

Worst case for FIFO is if program strides through memory
that is larger than the cache

How would random’s performance compare? ‘ L

Dec9, 2015 Sprenkle - CSCI330 14 !

FIFO in Action
All cache misses
9
Reference A B C D E A B C D E A B C D E
1 A A AA E EE E E c
2 B BB B A A A D E D
3 CICECHGIBEB B A E
4 D D DD C C B

Worst case for FIFO is if program strides through memory
that is larger than the cache

How would random’s performance compare?

Random could result in better performance Cvams

Dec9, 2015 Sprenkle - CSCI330 15 l!

Least Recently Used (LRU) Algorithm

® Use past knowledge rather than future

® Replace page that has not been used in the most
amount of time

® Associate time of last use with each page

String of page requests:

7 01 2 0 3 0 4 2 3 03 241 2 01 7 01

7| 17| |7] |2 2 4| (4| |4] [0 1 1 1
0 B o
. 3 o = 2 2 7

Memory over time 2>

Dec9, 2015 Sprenkle - CSCI330 16

LRU Algorithm Implementations

® Counter implementation
Every page entry has a counter

Every time page is referenced through this entry,
copy the clock into the counter

When a page needs to be changed, look at the
counters to find smallest value

® Stack implementation

Keep a stack of page numbers in a double link form
Page referenced:

. Implementation Tradeoffs?
® move it to the top

Dec9, 2015 Sprenkle - CSCI330 17

LRU Algorithm Implementations

® Counter implementation
Every page entry has a counter

Every time page is referenced through this entry, copy the
clock into the counter

When a page needs to be changed, look at the counters to
find smallest value

@ Requires searching through table
® Stack implementation
Keep a stack of page numbers in a double link form
Page referenced:
® move it to the top
® requires 6 pointers to be changed
@ No search for replacement, but updates are more expensive

Dec9, 2015 Sprenkle - CSCI330 18

LRU Approximation Algorithms

® LRU needs special hardware and still slow
e Reference bit
Associate each page with a bit, initially 0
When page is referenced, bit set to 1
Replace any page with reference bit 0 (if one exists)
® We do not know the order replaced
® Second-chance, aka clock, algorithm
Generally FIFO, plus hardware-provided reference bit
If page to be replaced has
® Reference bit =0 - replace it
® reference bit=1->

> set reference bit 0, leave page in memory
» replace next page, subject to same rules

Dec9, 2015 Sprenkle - CSCI330 19

Second Chance Page Replacement Algorithm

Page roquest summary: 04142K424041424u

 FEREEE
- o -1

Initial
state

Page request summary: 04 142 134:404142434

—

/ Mdd\nl\te"
e T R o
s Ol e [l e m i
3] o3

P:gerequ&tsummary 04142434240¢1§24 34
e

(y.unml chance)
0 /» m
- 1 .I - 1 - 1
0

http://www.mathcs.emory. edu/~cheung/(ourses/355/
Pec9. 2015 Gy11 abus/9-virtual -mem/SC-replace. html

20

Enhanced Second-Chance Algorithm

® Improve by using both reference bit and modify bit
® Consider ordered pair (reference, modify)
(0, 0) not recently used, not modified — best page to
replace

(0, 1) not recently used but modified — not quite as good,
must write out before replacement

(1, 0) recently used but clean — probably will be used
again soon

(1, 1) recently used and modified — probably will be used
again soon and need to write out before replacement
® Algorithm: use the clock scheme but use the four
classes to replace page in lowest non-empty class
Might need to search circular queue several times

Dec9, 2015 Sprenkle - CSCI330 21

Review: Page-Buffering Algorithms

® Keep a pool of free frames, always
Frame available when needed, not found at fault time

Read page into free frame and select victim to evict and add
to free pool

When convenient, evict victim

® Possibly, keep list of modified pages
When backing store otherwise idle, write pages there and set
to non-dirty

® Possibly, keep free frame contents intact and note what is

in them

If referenced again before reused, no need to load contents
again from disk
Generally useful to reduce penalty if wrong victim frame
selected

Dec9, 2015 Sprenkle - CSCI330 22

PREFETCHING

Dec9, 2015 Sprenkle - CSCI330 23

Cache Misses

Miss Type Description Hotel Analogy

Compulsory The first reference to a The hotel is empty and

or Cold block of memory, starting the first guest has not
with an empty cache. yet arrived.

Capacity The cache is not big The hotel has no
enough to hold every vacancies.
block you want to use.

Conflict Two blocks are mapped to A particular floor of the
the same location and hotel which a guest has
there is not enough room to stay on has all rooms
to hold both. occupied.

Dec9, 2015 Sprenkle - CSCI330 24

Prefetching

® |dea: Fetch the data before it is needed (i.e. pre-
fetch) by the program
® Why?
Memory latency is high. If we can prefetch accurately
and early enough we can reduce/eliminate that latency.
Can eliminate compulsory cache misses
Can eliminate all cache misses? Capacity, conflict?
® |nvolves predicting which address will be needed in
the future

Works if programs have predictable miss address
patterns

Dec9, 2015 Sprenkle - CSCI330 25

Prefetching and Correctness

® Does a misprediction in prefetching affect
correctness?

No, prefetched data at a “mispredicted” address is
simply not used

® There is no need for state recovery

® |n contrast to branch misprediction or value
misprediction

Dec9, 2015 Sprenkle - CSCI330 26

Basics

® In modern systems, prefetching is usually done in
cache block granularity
® prefetching is a technique that can reduce both
Miss rate
Miss latency
e prefetching can be done by
hardware
compiler
programmer

Dec9, 2015 Sprenkle - CSCI330 27

Prefetching Challenges?

Dec9, 2015 Sprenkle - CSCI330 28

Prefetching: The Four Questions

® What?

What addresses to prefetch
® \When?

When to initiate a prefetch request
® Where?

Where to place the prefetched data
® How?

Software, hardware, execution-based, cooperative

Dec9, 2015 Sprenkle - CSCI330 29

Challenges in Prefetching: What

e prefetching useless data wastes resources
Memory bandwidth
Cache or prefetch buffer space
Energy consumption

These could all be utilized by demand requests or more
accurate prefetch requests

® Accurate prediction of addresses to prefetch is important
Prefetch accuracy = used prefetches / sent prefetches

® How do we know what to prefetch
Predict based on past access patterns
Use the compiler’s knowledge of data structures

® Prefetching algorithm determines what to prefetch

Dec9, 2015 Sprenkle - CSCI330 30

Challenges in Prefetching: What

® One option: choose based on locality
Temporal locality (history)
Spatial locality (“nearby” data)

Dec9, 2015 Sprenkle - CSCI330 31

Challenges in Prefetching: When

® Prefetching too early

Prefetched data might not be used before it is evicted
from storage

® Prefetching too late
Might not hide the whole memory latency
® When a data item is prefetched affects the
timeliness of the prefetcher
® Prefetcher can be made more timely by

Making it more aggressive: try to stay far ahead of the
processor’s access stream (hardware)
Moving the prefetch instructions earlier in the code
(software)

Dec9, 2015 Sprenkle - CSCI330 32

Challenges in Prefetching: Where

® |n cache
+ Simple design, no need for separate buffers
-- Can evict useful demand data = cache pollution
® |n a separate prefetch buffer
+ Demand data protected from prefetches = no cache
pollution
-- More complex memory system design
® Where to place the prefetch buffer

When to access the prefetch buffer (parallel vs. serial with
cache)

® \When to move the data from the prefetch buffer to cache
® How to size the prefetch buffer
Keeping the prefetch buffer coherent

Dec9, 2015 Sprenkle - CSCI330 33

Challenges in Prefetching: Where (I1)

® Which level of cache to prefetch into?
Memory to L2, memory to L1. Advantages/disadvantages?
L2 to L1? (a separate prefetcher between levels)

® Where to place the prefetched data in the cache?

Do we treat prefetched blocks the same as demand-fetched
blocks?

Prefetched blocks are not known to be needed

® Do we skew the replacement policy such that it favors the
demand-fetched blocks?

E.g., place all prefetches into the LRU position in a way?

® Where to place the hardware prefetcher in the memory
hierarchy?

Dec9, 2015 Sprenkle - CSCI330 34

Challenges in Prefetching: How

® Software prefetching
ISA provides prefetch instructions
Programmer or compiler inserts prefetch instructions (effort)
Usually works well only for “regular access patterns”

® Hardware prefetching
Hardware monitors processor accesses
Memorizes or finds patterns/strides
Generates prefetch addresses automatically

® Execution-based prefetchers
A “thread” is executed to prefetch data for the main program

Can be generated by either software/programmer or
hardware

Dec9, 2015 Sprenkle - CSCI330 35

Looking Ahead

® Project 5 — due Friday
® Exam envelopes - Friday

Dec9, 2015 Sprenkle - CSCI330 36

