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Objective 

In projects 1-4 you created a fairly functional operating system that could run one 
process at a time.  In this project you will extend your operating system so that it 
can run multiple processes concurrently. 

Background 

There are three key pieces required to implement multiprogramming.  
1. The operating system must perform memory management. Memory 

management includes keeping track of which segments of memory currently 
contain processes and which are available to load new programs. It also 
includes the ability to load multiple programs into different memory 
segments so that the operating system can switch rapidly between them. 



2. The operating system must implement time-sharing.  Time-sharing requires 
that the operating system periodically regains control from the executing 
process, allowing it to suspend the executing process and start a different 
one. 

3. The operating system must perform process management. Process 
management includes keeping track of which processes are ready to run, 
which processes are blocked and why, where each process is located in 
memory and the context information necessary to suspend and resume each 
process. 

Memory Management 

Our operating system will manage memory using fixed-size segmentation.  With 
fixed-size segmentation, the available memory is divided into a number of fixed-size 
segments and each executing process is allocated one of these segments.  Earlier, we 
viewed memory as logically divided into ten segments (0x0000, 0x1000, …, 
0x9000).  Segment 0x0000 was reserved for the interrupt vector and segment 
0x1000 was reserved for the kernel.  The kernel routines that you wrote for loading 
and executing programs allowed programs to be loaded into a specified segment 
between 0x2000 and 0x9000.  You will modify your kernel so that it keeps track of 
which segments are free and which are currently occupied by executing programs. 
By keeping track of the free and occupied memory segments, the operating system 
will be able to automatically load multiple programs into memory. 
 
We will use a memory segment map to keep track of which segments are used and 
which are free.  A memory segment map is conceptually similar to a disk map.  It will 
have one entry for each memory segment.  The segments that are used will be 
indicated by one value and the segments that are free will be indicated by a different 
value.  Thus, finding free segments and releasing segments that are no longer being 
used will be fairly straightforward. 
  
You may notice that this memory management scheme suffers from two significant 
problems.  First, there is internal fragmentation of the memory.  Small programs will 
have a full segment allocated to them, even though they use only a small portion of 
it.  Thus, there is memory allocated that is not being used and is unavailable for use 
by other processes.  Second, the size of a program, including its data and stack 
segments, is limited to the size of a segment (0x1000 bytes = 65536 bytes = 64kB). 
Most modern operating systems get around these types of issues by using paged 
virtual memory.  While we will be discussing paged virtual memory in class, we will 
not be implementing it in this project.  All Intel processors since the 80386 provide 
hardware support for paged virtual memory, so implementing it would make a 
great--though ambitious--final project. 



Time-Sharing 

With time sharing, the operating system allows each process to run for a specified 
amount of time, called its time slice.  When a process’ time slice has expired, the 
operating system will select another process to run for a time slice.  To implement 
time-sharing, the OS needs a mechanism by which it can regain control of the 
machine when a process’ time slice expires.  The mechanism that is used on Intel 
x86 based machines (e.g., 80386, 80486, Pentium, Itanium etc…) is a programmable 
interrupt timer.  Basically the programmable interrupt timer can be set to generate 
an interrupt after a set amount of time.  On x86 machines, the programmable 
interrupt timer generates interrupt 0x08.  
 
Thus, if our OS installs an interrupt service routine for interrupt 0x08 and sets the 
timer appropriately, it can gain control of the machine each time the timer goes off. 
The details of interacting with the programmable interrupt timer will be handled by 
code that you are given in kernel.asm.  The one detail that you’ll need to know is 
that the given code programs the interrupt timer to generate an interrupt 0x08 
approximately 12 times per second.  If you are curious about the details check out 
the page: http://www.brokenthorn.com/Resources/OSDevPit.html. 

Process Management 

In a multiprogramming operating system, three of the main responsibilities related 
to process management are starting new processes, handling timer interrupts and 
terminating processes that have completed.  The memory management system 
described earlier as well as two process management data structures, the process 
control block (PCB) and the ready queue, are central to process management.  Each 
process has an associated PCB that stores information about it such as where it is 
located in memory and what its current state is (running, waiting, blocked, etc…). 
The ready queue is a list of the PCBs of the processes that are ready to run.  
  
When a new process is started, the process management system must consult with 
the memory management system to find a free memory segment in which to load 
the program.  A PCB is then obtained for the process and the process is loaded into 
memory, and its PCB is inserted into the ready queue.  When a timer interrupt 
occurs, the interrupt service routine for interrupt 0x08, which is part of the kernel, 
must save the context of the currently running process, select a new process from 
the ready queue to run, restore its context and start it running.  This is what we 
described as the process or short-term scheduler in class. When a process 
terminates, the memory segment that was used by the process and its PCB must 
both be released. 

Getting Started 

Make a complete copy of your project4 directory as project5.  

http://www.brokenthorn.com/Resources/OSDevPit.html


Drew University:  

Download & unzip the files for project 5, then move them into your project 5 folder. 

Washington and Lee University:  

See project assignment web page for instructions. 
 
 
 
You should have a directory called project5NewFiles containing the following: 

● kernel.asm – assembly language routines you will use in your kernel. 
● lib.asm – assembly language routine for invoking interrupts (i.e. making 

system calls) from user programs. 
●  proc.h – defines the data structures and declares the prototypes used to 

manage memory and processes. 
● proc.c – defines some of the functions used to manage memory and 

processes. 
● testproc.c – the set of tests that test the implementations of the data 

structures and functions defined in proc.h. 
●  bootload.asm, map.img, dir.img – a version of the bootloader, disk 

map and disk directory that allow 20 sectors for the kernel. 
  
Note that kernel.asm and lib.asm contain some new functions that were not 
included in earlier versions.  Replace the old versions that were there.  

Timer Interrupts 

The programmable interrupt timer periodically generates an interrupt.  The new 
kernel.asm provided with this project contains three new functions that will 
allow your OS to handle timer interrupts: makeTimerInterrupt, timer_ISR 
and returnFromTimer.  
 

●  makeTimerInterrupt programs the interrupt timer to generate 
approximately 12 interrupts per second and sets entry 0x08 in the interrupt 
vector to point to the timer_ISR function.  Thus, each time the timer 
generates an interrupt, timer_ISR will be invoked.  
 

● timer_ISR saves the context of the interrupted process by pushing all of 
the register contents onto its stack.  After saving the interrupted process’ 
context, timer_ISR invokes a function named handleTimerInterrupt 
that you will define in your kernel.  timer_ISR will pass the memory 
segment (e.g., 0x3000 or 0x5000) and stack pointer of the interrupted 
process to handleTimerInterrupt. Eventually, you will implement that 
function so that it saves the stack pointer of the interrupted process and then 
selects a new process to be run.  When handleTimerInterrupt has 



finished its work, it will call returnFromTimer, passing it the segment and 
stack pointer of the process that you wish to run next.  
 

● returnFromTimer will restore the context of the process by popping all of 
the register values that were pushed by the timer_ISR routine and then 
resume the process. 

  
For now, we just want to setup and test the timer interrupts to be sure they are 
working.  Add a call to makeTimerInterrupt() to the main function in your 
kernel after the call to makeInterrupt21 and before you execute the shell. Add 
the handleTimerInterrupt function to your kernel with the prototype: 
  
  void handleTimerInterrupt(int segment, int stackPointer); 
  
For testing purposes, handleTimerInterrupt should print a message (e.g., “tic”) 
to the screen and then invoke returnFromTimer defined in kernel.asm. 
returnFromTimer has the prototype: 
  
 void returnFromTimer(int segment, int stackPointer); 
  
Thus, when you invoke returnFromTimer, you will need to provide arguments 
for the segment and stack pointer.  For now, you should pass it the same segment 
and stackPointer that were passed to your handleTimerInterrupt function, 
which means that you will be resuming the same process that was interrupted (i.e., 
your shell in this case).  Later you’ll change this to allow a different process to be 
resumed after each timer interrupt. 
  
When you compile and run your kernel now, your shell should start and then the 
screen should fill with the message you printed in handleTimerInterrupt. Once 
you’ve tested that this works, feel free to comment out the “tic”. 

Structures and Functions for Managing Memory and Processes 

To manage memory and processes, your kernel will need several data structures. 
While there are many different possibilities for these structures, you are provided 
with one possible definition of the structures in proc.h. Study the comments in 
this file.  Once you understand the role that will be played by each of the structures 
and functions, create a file named proc.c, include proc.h at the top, and provide 
implementations for each of the defined functions. 
  
Because testing and debugging the functions in your proc.c file would be very 
difficult within the kernel, you will test and debug them as a stand-alone C program 
running not on bochs but on your machine. 
 



The file testproc.c contains a main function and functions that are unit tests for 
the functions defined by proc.h.  You can compile testproc.c using the gcc 
compiler and run it using the following commands: 
  
 gcc testproc.c proc.c 
 ./a.out 
  
 
  



Since initializeProcStructures has been implemented for you in proc.c, 
you should see the output: 
  

Testing initializeProcStructures 
done 

  
Add the rest of the functionality to proc.c and run the unit tests in the 
testproc.c program to check all of the functionality in your proc.c file. 

Implementing Multiprogramming 

To implement multiprogramming in your kernel, you will need to complete a 
number of tasks: 

Set Up 
To create and initialize the data structures that you will use to manage the 
processes, modify kernel.c so that it defines the label MAIN (see testproc.c 
for example), includes the proc.h file, and invokes 
initializeProcStructures in main. Also modify run.sh so that it compiles 
proc.c (using bcc now) and links it with your kernel. Note: make sure you do not 
put //comments before the #define or #include. 

Starting Programs 
To start a new program in a multiprogramming system,  

1. find a free memory segment for the process 
2. obtain and setup a PCB for the process 
3. load the program into the free memory segment 
4. place the process’ PCB into the ready queue.  

The process then waits in the ready queue until it is selected to run by the 
scheduler. 
  
Currently programs are loaded and run by the executeProgram function that you 
wrote in project 3.  This function has the prototype: 
  

int executeProgram(char *fname, int segment); 
  
This function loaded the program fname into the specified memory segment and 
then invoked the launchProgram function provided in kernel.asm to jump to 
the first instruction in that segment, starting the program.  To implement 
multiprogramming you will need to modify this function. 
  
Change the prototype of the executeProgram function to 
  

int executeProgram(char *fname); 
  



Change all calls to executeProgram (e.g. in handleInterrupt21) so that they 
no longer provide an argument for the segment parameter that has been removed. 
Now modify executeProgram so that it finds an empty memory segment (using a 
function from proc.c) and then loads the desired program into that segment and 
jumps to its first instruction using the launchProgram function. You don’t need to 
check that the memory segment is valid any more. 
  
If you compile and run your kernel at this point, it should execute exactly as it did in 
project 4. 
  
To setup for multiprogramming as described above, you should further modify 
executeProgram so that it obtains a PCB for the process, initializes the PCB, and 
places it into the ready queue.  The PCB should be initialized by  

1. setting the name of the process to its filename 
2. the state of the process to STARTING  
3. the segment to the memory segment where the process is loaded.  
4. The stack pointer should be set to 0xFF00, which will make the top of the 

process’ stack begin at offset 0xFF00 within its segment. 
  
Finally, we no longer want to jump to the first instruction of the new process at this 
point.  Instead we simply want to return to the process that made the call to 
executeProgram.  Eventually, a timer interrupt will occur and your scheduler will 
select a PCB (possibly the new process) from the ready queue to be run.  Replace the 
call to launchProgram with a call to initializeProgram. 
initializeProgram is provided by the new kernel.asm file and has the 
prototype: 
  

void initializeProgram(int segment); 
  
initializeProgram creates an initial context for the process and pushes it onto 
the process’ stack.  This is a clever way of making a new process look exactly as if its 
context was saved by the timer_ISR following timer interrupt. This has the 
advantage that when the scheduler later wants to start this process, it can treat it 
the same as any other process (i.e., by calling returnFromTimer to restore the 
process’ context by popping it off of its stack.) 
  
With the call to launchProgram replaced with a call to initializeProgram, 
executeProgram will now actually return to its caller.  executeProgram should 
return 

● -1 if the program file cannot be found 
● -2 if the memory is full 
● 1 if the program loads and initializes successfully. 

  
 
  



Handling Timer Interrupts (i.e. Scheduling) 

You will now modify handleTimerInterrupt so that your OS schedules 
processes using round-robin scheduling. As we saw earlier, 
handleTimerInterrupt is invoked each time a timer interrupt occurs. When 
handleTimerInterrupt is invoked, it is passed the segment and the stack 
pointer of the process that was interrupted (i.e., the running process).  You should  

1. save the segment and stack pointer into the PCB of the running process 
2. mark that process as READY 
3. add it to the tail of the ready queue.  
4. remove the PCB from the head of the ready queue, mark it as RUNNING 
5. set the running variable to point to it 
6. invoke returnFromTimer with the segment and stack pointer of the new 

running process 
If the ready queue is empty, then complete the above steps using the idle process 
instead. 
  
Note that the first time handleTimerInterrupt is invoked, the running variable 
should be pointing to the PCB of the idle process (see 
initializeProcStructures function in proc.h).  Thus, your code will save 
the stack pointer that was passed into the idle process’ PCB. When the very first 
timer interrupt occurs, the infinite while loop at the end of the kernel’s main 
function will be executing.  Thus, the idle process becomes that while loop! Thus, 
anytime there are no processes in the ready queue, the OS will run that while loop 
for a time slice and then check the ready queue again. 

Terminating Programs 

In project 3, you implemented the terminate function so that anytime a process 
terminated the shell was reloaded.  With multiprogramming, the shell will still be 
running concurrently with other processes.  Thus, there will be no need to reload it. 
Instead, when a process terminates, you will need to free the memory segment that 
it is using, free the PCB that it is using, set its state to DEFUNCT and enter an infinite 
while loop. Eventually a timer interrupt will occur, and the scheduler will pick a new 
process from the ready queue and start it.  Note that you will need to modify 
handleTimerInterrupt so that it deals appropriately with a running process 
that is DEFUNCT. 

Oops… That’s Not My Data 

There are a few problems with the code that you have written in the 
executeProgram and terminate functions.  These functions are usually 
invoked via system calls (i.e., interrupt 0x21).  When that happens, the data segment 
(DS) register points to the data segment of the program that made the system call. 
However, the global variables being used to store the memory and process 
management data structures are stored in the kernel’s data segment.  Thus, we need 



to set the DS register to point to the kernel’s data segment before we access those 
structures and then restore the DS register to the calling program when we are 
finished.  Note that this was not a problem with the timer interrupts earlier because 
the timer_ISR routine you were given in kernel.asm resets the DS register to 
point to the kernel’s data segment for you.  
  
kernel.asm provides two functions that will help, their prototypes are: 
  
 void setKernelDataSegment(); 
 void restoreDataSegment(); 
  
You will need to invoke setKernelDataSegment before accessing any of the 
global data structures and restoreDataSegment after accessing them.  For 
example, to find a free memory segment you might write: 
  
 setKernelDataSegment(); 
 freeSeg = getFreeMemorySegment(); 
 restoreDataSegment(); 
  
When you copied the filename from the parameter to executeProgram into a 
PCB, you were attempting to copy data that is addressed relative to the start of one 
segment (the shell’s stack segment) to a space that is addressed relative to the start 
of a different segment (the kernel’s data segment).  Specifically, the filename was 
stored in an array of characters in the shell’s stack segment and the array of 
characters in the PCB is in the kernel’s data segment.  The problem arises because 
the MOV machine language instruction that ultimately copies the data assumes all 
addresses are relative to the data segment (DS) register.  Thus, we need a way to 
copy data from one segment to another.  We can do this using the putInMemory 
function from project 1 as follows: 
  
/* kStrCopy(char *src, char *dest, int len) copy at most 
len 
 * characters from src which is addressed relative to  
 * the current data segment into dest, 
 * which is addressed relative to the kernel's data segment  
 * (0x1000). 
 */ 
void kStrCopy(char *src, char *dest, int len) { 
 int i=0; 
 for (i=0; i<len; i++) { 
 putInMemory(0x1000, dest+i, src[i]); 
 if (src[i] == 0x00) { 
 return; 
 } 
 } 



} 
  
This kStrCopy method can be used to copy the filename into the PCB as long as it 
is used when the data segment register is set to the interrupted program’s segment 
(i.e., not between calls to setKernelDataSegment and 
restoreDataSegment). 
  
Modify your executeProgram, handleTimerInterrupt and terminate 
functions (and possibly other locations depending upon your implementation) so 
that any code that accesses the global data structures (or calls a function that does) 
is surrounded by calls to setKernelDataSegment and restoreDataSegment. 
Also add the kStrCopy function to your kernel and make appropriate 
modifications to the code that copies the filenames into PCBs. 

Enabling Interrupts 

You will also need to make a small change to each of your user programs to run 
them concurrently. It turns out that 16-bit real mode programs are started with 
hardware interrupts (e.g. the timer) disabled by default.  Thus, you need to enable 
interrupts. The new lib.asm file provides a function with the prototype: 
  

void enableInterrupts(); 
  
You should place a call to this function as the first line of main in each of your user 
programs. 

Testing 

If you have implemented all of the above functionality correctly, your kernel should 
run exactly as before.  When you start it the shell should be launched. Of course, how 
that happened is different than it was before.  Now, the shell was loaded into a free 
memory segment and its PCB was put in the ready queue. The kernel’s main method 
entered the infinite while loop.  Eventually a timer interrupt occurred, and the 
scheduler selected the shell from the ready queue and started it executing. 
  
To more fully test your implementation of multiprogramming, you’ll need a program 
(or two) that run for a while.  The following user program will print out Hello 1000 
times, pausing for a time between each output. 
  

main() { 
int i=0;  
int j=0;  
int k=0; 

  
enableInterrupts(); 

 
for(i=0; i<1000; i++) { 



 print("Hello\n\r\0"); 
 for(j=0; j<10000; j++) { 
 for(k=0; k<1000; k++) { 
 
 } 
 } 

} 
exit(); 

} 
  
Note: print and exit are the names of functions in my user library.  You’ll need to 
replace them with your own. 
  
You should be able to run this program from your shell and then, while it is running, 
enter a command like dir.  If all is working correctly you will see the directory 
listing intermingled with the output of the running program. 

Improvements 

1. Add a yield function to your kernel with the signature: 
  

void yield(); 
  
This function causes the executing process to give up the remainder of its time slice 
and be put back into the ready queue. Hint: You can simulate a timer interrupt with 
the interrupt function.  
 
In addition, you should add a system call and user library function for yielding.  The 
handleInterrupt21 function should provide yield as follows: 
  
 yield: give up the remainder of the time slice. 
  AX:                     0x09 
 BX:                     Unused 
 CX:                     Unused 
 DX:                     Unused 
 Return: 1 
  
2. Add a showProcesses function to your kernel with the signature: 
  
void showProcesses(); 
  
This function should display a list of the names and memory segment indices of all 
of the currently executing processes. Note the index of a memory segment is its 
index in the memory map (e.g. 0x2000®0, 0x3000®1, etc.).  
 



In addition, you should add a user library function and a system call for showing the 
processes.  Your handleInterrupt21 function should now provide the following 
service: 
  
 showProcesses: list the currently executing processes 
 AX:                    0x0A 
 BX:                    Unused 
 CX:                    Unused 
 DX:                    Unused 
 Return: 1 
  
Finally, extend your shell so that it recognizes the command ps, which will display 
the names and memory segments of all of the running processes. 
  
3. Add a kill function to your kernel with the signature: 
  

int kill(int segment); 
  
This function should kill the process that is executing in the segment with the 
specified index. When the process is killed it no longer executes and its memory and 
PCB are freed.  This function returns 

● 1 if the process is successfully killed 
● -1 if there is no process currently running in the segment with the specified 

index 
In addition, you should add a user library function and a system call for killing a 
process.  Modify your handleInterrupt21 function so that it provides the 
following kill service: 
  
 kill:  kill the process executing in the segment with index indicated by BX 
 AX:                     0x0B 
 BX:                     the segment index 
 CX:                     Unused 
 DX:                    Unused 
 Return: 1 if the process is successfully killed 
                                                       -1 if there is no process executing in segment BX 
  
Extend your shell so that it recognizes the command kill <seg>, which will kill 
the process currently executing in the segment with the specified segment index. 
The shell should print a message indicating if the process was successfully killed or 
not. 

Bonus Features 
1. Add a sleep function to your kernel with the signature: 
  



void sleep(int seconds); 
  
This function should cause the invoking process to sleep for the specified number of 
seconds.  Sleeping the process should be removed from the ready queue until they 
are done sleeping at which point they should be returned to the ready queue. In 
addition, you should add a user library function and a system call for sleeping a 
process. Modify your handleInterrupt21 function so that it provides the 
following sleep service: 
  
 sleep:  cause the process to sleep for the number of seconds indicated by 
BX 
 AX: 0xA1 
 BX: the number of seconds to sleep 
 CX: Unused 
 DX: Unused 
 Return: 1 
  
2. At this point all programs executed in your shell are executed concurrently with 
the shell.  In most modern OS shells, the default behavior when program is executed 
is to have the shell wait for the process to complete before continuing.  Make the 
appropriate modifications to your shell and operating system so that it supports the 
following two forms of the execute command: 

● execute <prog> the shell is suspended while prog executes.  When prog 
is complete the shell begins executing again. 

● execute <prog> &   the shell and prog are executed concurrently.  This is 
the current behavior of your shell. 

  
 3. Implement a static-priority scheduling algorithm.  Make the appropriate 
modifications to your shell and operating system so that its supports the following 
form of the execute command: 
  
execute <prog> <priority> & 
the program is executed concurrently with the shell with the specified priority.  The 
priorities should be integer values with higher numbers indicating higher priority. 
The highest priority process in the ready queue should always be run. If no priority 
is specified the process should run with a default priority.  

Submission 

Your project will be graded on its correctness as well as its style.  Your source code 
files and your run.sh script should be nicely formatted and well documented. 

Drew University: 

Create a zip archive of your project5 directory and submit to google classroom 



before the deadline.  Your source code files and your run.sh script should be nicely 
formatted and well documented. 

Washington and Lee University: 

Copy your project5 directory into your turnin directory. 
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