Operating Systems
Project 5:
Processes & Multiprogramming

CSCI1330 - Project 5

New Files

® New versions of:
kernel.asm
lib.asm
bootload.asm
map .img
dir.img

® New files:
proc.h
testproc.h

CSCI330 - Project 5 2

Multiprogramming Requirements

® Memory Management
Ability to load multiple programs into memory
® Time Sharing
Ability to periodically stop the running process and
transfer control to an ISR in the OS.
® Process Management
Ability to keep track of and change between
executing processes.
® Context switching
® Ready queue

CSCI330 - Project 5 3

Segment-Based Memory Management

® Allow one process to be loaded into each
segment
Segments: 0x0000, 0x1000, 0x2000, ... 0xX9000
® 0x0000 reserved for interrupt vector
® 0x1000 reserved for kernel
® 8 segments for user programs
» 0x2000 — 0x9000

® Maximum program + data + stack?
0x1000 bytes = 65536 bytes = 64kB

CSCI330 - Project 5 4

Tracking Free Memory

® Memory segment map:
Each index corresponds

S t
to one memory segment. ; W segren
® segment = (index+2)*0x1000 .
® index = (segment/0x1000)-2 )
Marked as: 3 Segment
0x0006
* FREE i "
5
® USED d
7

€SCI1330 - Project 5

Time Sharing:
Programmable Interrupt Timer

® Generates interrupt 0x08
® Will generate approximately 12 interrupts /
second
® |SR for interrupt 0x08 will do context switching
and scheduling
Assembly language code is given
Write a C function that gets called on each interrupt
® Similar to handleInterrupt2l for interrupt 0x21.

CSCI330 - Project 5 6




Interrupt Ox08 ISR Details

® makeTimerInterrupt()
Sets entry 0x08 in interrupt vector to point to timer_ISR assembly routine in
kernel.asm.

® timer_ISRQ)
Pushes context (GP registers + PC) onto stack of interrupted program.
Invokes handleTimerInterrupt with segment & stack pointer of interrupted
program
® handleTimerInterrupt(int segment, int
stackPointer)
C function that you add to your kernel
Does process management and short term scheduling
® returnFromTimer(int segment, int stackpointer)
Assembly routine in kernel.asm
Called at end of handleTimerlnterrupt to return to program in segment.
® Pops context of program from its stack
® Transfers control to program in segment
Call does not return.

CSCI330 - Project 5 7

Process Management Responsibilities

e Starting a new process (executeProgram)
Obtain process control block (PCB) for the process
Load program into free segment
Put PCB into ready queue
® Short-term scheduling
(handleTimerInterrupt)
Save stack pointer of interrupted process in PCB

Pick new process from ready queue
Start new process by calling returnFromTimer

® Terminating a processes (terminate)
Release memory segment
Release PCB

CSC1330 - Project 5 8

proc.h

® proc.h defines a constants, data structures,
global variables. and functions that you will use
for memory and process management.

® proc.his given

® You need to write proc. c to implement the
defined functions.

CSCI330 - Project 5 9

proc.h Data Structures

memoryMap

T Constants:

) FREE
USED

3

4

5|

6|

7|

CSC1330 - Project 5 10

proc.h Data Structures

® Process Control Block:

Constants:

struct PCB P DEFUNCT

char name[7] !

int state----"" STARTING

int segment RUNNING

int stackPointer READY

struct PCB *next

struct PCB *prev BLOCKED

CSCI330 - Project 5 11

proc.h Data Structures

® PCB Pool
struct PCB
char name[7]: "\Q"
int state: DEFUNCT

int segment: 0x0000

int stackPointer @x0000
pcbPool struct PCB *next NULL
0 struct PCB *prev NULL

N v s W e

 — struct PCB
CSCI330 {2roj 5. 12




proc.h Data Structures

®struct PCB *running

struct PCB

pcbPool
o struct PCB
char name[7]: "uprog2\o"
1 int state: RUNNING
) \) int segment: 0x3000
int stackPointer 0OxFF0Q
3 struct PCB *next NULL
4 struct PCB *prev NULL
5| .
6 .
7] struct PCB
C94CI330 - Project 5 13

proc.h Data Structures
® Ready Queue

struct PCB readyTail

state: READY
next: NULL

prev: ./"‘)

pcbPool struct PCB
state: READY
next: e—

prev: )

struct PCB

T ~—_,| state: READY

next: e—
prev: NULL

struct PCB
(C4CI330 - Project 5 14

readyHead

W

ET- N N N R ORIy

proc.h Data Structures

® |nitially the running process will be the Idle
Process

struct PCB *running

idleProc

struct PCB
char name[7]: "IDLE\@"
int state: READY
int segment: 0x1000

int stackPointer 0x???7?
struct PCB *next NULL
struct PCB *prev NULL

CSCI330 - Project 5 15

proc.h Functions

®proc. h defines functions for manipulating
these data structures:

void initializeProcStructures(Q);
int getFreeMemorySegment();
void releaseMemorySegment(int seg);
struct PCB *getFreePCB(Q);
void releasePCB(struct PCB *pcb);
void addToReady(struct PCB *pcb);
struct PCB *removeFromReady();

CSCI330 - Project 5 16

testproc.c

® Write proc. C to implement those functions.
® Use and extend testproc. c to test your
implementations before trying to use them in
the kernel.
Compile with gcc:
®gcc testproc.c proc.c
Run on local machine:
® /a.out

CSCI330 - Project 5 17

Using proc.hand proc.c

® To use the variables in proc. h and the functions in
proc.c:

inkernel.c:
® #define MAIN
® #include "proc.h"

In any other files that use proc. h (e.g., proc.cq
® #include "proc.h"

Now also need to link proc. o when creating kernel

CSCI330 - Project 5 18




Accessing the Kernel’s
Data Segment
e The global variables defined in proc.h are put
into the kernel’s data segment by the compiler.
® Variables in the data segment are addressed by
offset into the data segment.
If readyHead = 0x0450,

then the PCB pointed to by readyHead is stored at
memory address:

ds*0x10 + 0x0450

CSCI330 - Project 5 19

Accessing the Kernel’s
Data Segment

e When handleTimerInterrupt is called,
ds register will contain address of the
interrupted process’ data segment.

If readyHead = 0x0450,

when the kernel attempts to access the PCB pointed

to by readyHead, it looks at memory address:
ds*0x10 + 0x0450

which is now in the interrupted process’ data
segment not the kernel’s data segment!

CSCI330 - Project 5 20

Accessing the Kernel’s
Data Segment

® kernel.asm provides 2 functions to deal with
this situation:
setKernelDataSegment()

® |nvoke this in your kernel before accessing any global
variables defined in proc. h (including before calling
any functions from proc. h, which access those
variables!)

restoreDataSegment()

® Invoke this in your kernel after you are finished
accessing the global variables.

CSCI330 - Project 5 21

Copying Data to the
Kernel’s Data Segment

¢ In executeProgram(char *fname) you
need to copy the name from fname into the
PCB.

® But...
fname is addressed relative to the shell’s stack segment.
The PCB is addressed relative to the kernel’s data segment.

Use the kStrCopy function given in the project description when
running in the shell’s data segment.

® Not between setKernelDataSegment and
restoreDataSegment.

CSCI330 - Project 5 22




