
1

Today
• Unix as an OS case study
• Intro to Shell Scripting

Sept 10, 2018 Sprenkle - CSCI330 1

• Make sure the computer is in Linux
• If not, restart, holding down ALT key

• Login!

• Posted slides contain material 
not explicitly covered in class

Review
• What is an Operating System?
• What are its goals?
• How do we evaluate it?

Sept 10, 2018 Sprenkle - CSCI330 2



2

Review: What is an Operating System?

• A program that acts as an intermediary between 

a user of a computer and the computer 

hardware

ØResource allocator

ØControl program

• Tasks:

Ø Execute user programs and make solving user 

problems easier

ØMake the computer system convenient to use

ØUse the computer hardware in an efficient manner

Sept 10, 2018 Sprenkle - CSCI330 3

Hardware

Operating System

Applications

What is an Operating System?

• Formally: A program that acts as an intermediary 
between the computer user and the computer 

hardware

• Goals:

Ø Make the computer system easy to use.

Ø Use the computer hardware efficiently.

• It is an extended machine

Ø Hides the messy details which must be performed

Ø Presents user with a virtual machine, easier to use

• It is a resource manager

Ø Each program gets time with the resource

Ø Each program gets space on the resource

Sept 10, 2018 Sprenkle - CSCI330 4



3

Review: OS Goals
• Make computers easier to use

ØAbstraction!
ØBridge gap between hardware and user experience

• Use computer hardware efficiently

Sept 10, 2018 Sprenkle - CSCI330 5

Why are these two separate goals?

What is a “computer”?

Review: Evaluating an Operating System
• Reliability

ØDoes exactly what it is designed to do

• Security
ØWithstands malicious attacks, privacy, …

• Portability
ØRuns on multiple HW specifications

• Performance 
Ø Efficiency, fairness, response time, throughput, 

consistency

Sept 10, 2018 Sprenkle - CSCI330 6



4

SYSTEMS PROGRAMMING

Sept 10, 2018 Sprenkle - CSCI330 7

One Course Goal: Develop a Simple OS
• How are we going to do that?

Ø Systems programming!

Sept 10, 2018 Sprenkle - CSCI330 8



5

What is Systems Programming?

• Program development with system tools
Ø (no fancy pants IDEs here)

• Uses system calls that hook in to core OS 
functions

• Use coding standards to ensure portability
ØCommon file locations
ØCommon compilation & installation procedures
ØBasic shell functionality

• We’ll be programming in the Unix environment, 
using C

Sept 10, 2018 Sprenkle - CSCI330 9

The System Programmer’s Toolbox
• Shell: a program used to run other programs
• Text editor: where you’ll develop your code

Ø Your faves?
• Compiler: transforms source code into an 

executable file
Ø gcc

• Debugger: a program that allows you to step 
through an execution & observe how the program 
state (i.e., variable values) changes
Ø gdb
Ø Print statements

Sept 10, 2018 Sprenkle - CSCI330 10



6

The System Programmer’s Toolbox
• Shell: a program used to run other programs
• Text editor: where you’ll develop your code

Ø Your faves?
• Compiler: transforms source code into an 

executable file
Ø gcc

• Debugger: a program that allows you to step 
through an execution & observe how the program 
state (i.e., variable values) changes
Ø gdb
Ø Print statements

Sept 10, 2018 Sprenkle - CSCI330 11

More on Wednesday

Why Unix?
• Open source = easier to study

ØWindows is proprietary & closed
ØOSX is proprietary and is built on top of Unix

• Historic: developed in the 60s & 70s
ØOne of the oldest OS’s in use today

• Most serious programmers and hackers know 
their way around Unix/Linux

• Linux is a Unix-like OS

Sept 10, 2018 Sprenkle - CSCI330 12



7

Why C?
• The high-level language (HLL) that’s closest to 

the hardware
• If you understand C, you [pretty much] 

understand how machines store and process 
data

Sept 10, 2018 Sprenkle - CSCI330 14

UNIX

Sept 10, 2018 Sprenkle - CSCI330 15



8

Unix Philosophy
• Make each program do one thing well

ØMore complex functionality by combining programs
ØMake every program a filter
ØMore efficient
ØBetter for reuse

• Portability
• No GUIs
• Only error feedback

Sept 10, 2018 Sprenkle - CSCI330 16

What is a Shell?
• User interface to the operating system
• Command-line interpreter
• Functionality:

Ø Execute other programs
Ø Manage files
Ø Manage processes

• A program, like any other
• Basic form of shell:

Ø while <read command>:
• parse command
execute command

17

hides details of underlying 
operating system

Sept 10, 2018 Sprenkle - CSCI330



9

The Shell and Terminal
• When you open the terminal, you can interact 

with the shell

Sept 10, 2018 Sprenkle - CSCI330 18

Directory Shortcuts
•.

ØCurrent directory
•..

ØParent directory of current directory
Ø Every directory except the root directory has a 

parent directory
•~

ØUser’s home directory

Sept 10, 2018 Sprenkle - CSCI330 19

Useful in a variety of Unix commands



10

Unix Commands Worksheets
• Work together on these worksheets
• Check-in at 2:05 p.m.

Sept 10, 2018 Sprenkle - CSCI330 20

Handout Discussion
• What additional Unix commands did you find?
• What are the tradeoffs to the Unix command 

design (many small, simple programs; can be 
combined)?

Sept 10, 2018 Sprenkle - CSCI330 21



11

Unix Design
• Small, simple programs

Ø Easier to maintain
Ø Single-responsibility principle

• Combine (a few or lots) with pipes
Ø Easy to combine with a simple interface |

• Not-so-user-friendly to get started

Sept 10, 2018 Sprenkle - CSCI330 22

USEFUL SHORTCUTS 

Sept 10, 2018 Sprenkle - CSCI330 48



12

Useful Shortcuts
• Up arrow
• !command-prefix 

Ø ! = bang
ØRepeat most recent command that begins with prefix

• Tab completion
ØUse tab to complete filepaths and commands

Sept 10, 2018 Sprenkle - CSCI330 49

SHELL SCRIPTING

Sept 10, 2018 Sprenkle - CSCI330 51



13

Review: What is a Shell?
• User interface to the operating system
• Command-line interpreter
• Functionality:

Ø Execute other programs
Ø Manage files
Ø Manage processes

• A program like any other
• Basic form of shell:

Ø while <read command>:
• parse command
execute command

52

hides details of underlying 
operating system

Sept 10, 2018 Sprenkle - CSCI330

What is a shell script?

• A shell script is a list of commands to be run by a 

shell

Øbasically a program

Øuses shell commands instead of C or Java statements

• Why?

Ø automate repetitious tasks

• Ex: executing a program on a large set of test inputs

Øpackage up commonly executed command 

sequences

Ø create our own commands

Sept 10, 2018 Sprenkle - CSCI330 53



14

Simple Shell Script Example

#!/bin/sh

echo "Hello World" Command to execute

Which shell to use

Look at the available shells by executing
ls -l /bin/*sh

What do you notice about /bin/sh?

echo – like a print statement

#! is known as the shebang

Sept 10, 2018 Sprenkle - CSCI330 54

Shell Scripts
• A shell script is a regular text file that contains 

shell or UNIX commands
• Kernel uses the first line of script to determine 

which shell script to use
Ø #!pathname-of-shell

• Kernel invokes pathname and sends the script as an 
argument to be interpreted

Ø If #! is not specified, the current shell assumes it is a 
script in its own language
• Can lead to problems

Sept 10, 2018 Sprenkle - CSCI330 55



15

Invoking a Script
• A script can be invoked as:

Øsh scr_name [ arg … ]
Øsh < scr_name [ args … ]
Øpath/to/scr_name [ arg …]

• Before running, script must have execute permission:
Øchmod +x scr_name

56

Where sh is whatever 
shell you want

We’ll typically use the 1st or 3rd execution option
and we’ll use the bash shell

Sept 10, 2018 Sprenkle - CSCI330

Example Programs
• In /csdept/courses/cs330/handouts/
bash_examples/

• In a new terminal/tab, go into this directory
• Look at the permissions on the files

Sept 10, 2018 Sprenkle - CSCI330 57



16

Writing Your First Bash Script
• Bash: Bourne-again shell

ØUnix shell and command language
• Open your favorite text editor
• Write a simple bash script:

Ø Type in the shebang
ØAnd the command: 

echo "Hello World"
Ø and save as hello.sh

• Type bash hello.sh to run

Sept 10, 2018 Sprenkle - CSCI330 58

#!/bin/sh

Comments
• Comments begin with a #
• Comments end at the end of the line
• Comments can begin whenever a token begins
• Many text editors will help you with syntax 

highlighting
• Examples:

59

# This is a comment
# and so is this
grep foo bar # this is a comment
grep foo bar# this is not a comment

Style requirement: 
A comment on 2nd line in your script that lists you as author
Sept 10, 2018 Sprenkle - CSCI330



17

Your Second Script
• Write a script that

ØDisplays the files in the current directory
Ø Lists all logged-in users

• Your script should contain authorship info near 
the top

• Build in pieces
• Execute and test your script

ØVerify the output

(Yes, even this short script)

Sept 10, 2018 Sprenkle - CSCI330 60

Variables
• Don't have to be declared in advance
• Untyped: the same variable can hold an integer 

value or a string
• Syntax for using variables (bash):

ØDefining the value of a variable name:
•name=value

ØUsing the variable name:
•$name    or     ${name}

• Variables can be local or environment
Ø Environment variables are part of UNIX and can be 

accessed by child processes
Sept 10, 2018 Sprenkle - CSCI330 61

Notice no spaces around =



18

Variable Example

62

#!/bin/sh

MESSAGE="Hello World"
echo $MESSAGE
echo '$MESSAGE'
echo "$MESSAGE"

variable.sh

Prints variable
Prints literally
Prints variable

Sept 10, 2018 Sprenkle - CSCI330

Environmental Variables

63

Name Meaning
$HOME Absolute pathname of your home directory
$PATH A list of directories to search for
$MAIL Absolute  pathname to mailbox
$USER Your user name
$SHELL Absolute pathname of login shell
$TERM Type of terminal
$PS1 Prompt

Sept 10, 2018 Sprenkle - CSCI330



19

Using Environment Variables

64

#!/bin/bash

echo I am $USER
echo "I live at $HOME"

env_var.sh

Both echo statements 
work with or without 

quotes

Sept 10, 2018 Sprenkle - CSCI330

Modify your second script
• Write a script that

ØDisplays the files in YOUR HOME directory
Ø Lists all logged-in users

• Your script should contain authorship info near 
the top

• Build in pieces
• Execute and test your script

ØVerify the output

(Yes, even this short script)

Sept 10, 2018 Sprenkle - CSCI330 65



20

Parameters
• A parameter is one of the following:

ØA positional parameter, starting from 0
ØA special parameter

• To get the value of a parameter: ${param}
ØCan be part of a word  (abc${foo}def)
ØWorks within double quotes

• The {} can be omitted for simple variables, 
special parameters, and single digit positional 
parameters

66Sept 10, 2018 Sprenkle - CSCI330

Positional Parameters
• The arguments to a shell script

Ø $0, $1, $2, $3 …
Ø Parameter 0 is the name of the shell or the shell script

• The arguments to a shell function
• Arguments to the set built-in command

Ø set this is a test
• $1=this, $2=is, $3=a, $4=test

• Manipulated with shift
Ø shift 2

• $1=a, $2=test

67Sept 10, 2018 Sprenkle - CSCI330



21

Example with Parameters
• Script

• Invocation:

68

#!/bin/sh

# Parameter 1: string
# Parameter 2: file
grep $1 $2 | wc –l

$ ./countlines ing /usr/share/dict/words
30415

countlinesSept 10, 2018 Sprenkle - CSCI330

Special Parameters

69

Parameter Meaning
$# Number of positional parameters
$- Options currently in effect
$? Exit value of last executed command
$$ Process number of current process
$! Process number of background process
$* All arguments on command line from 1 

on
"$@" All arguments on command line

Individually quoted "$1" "$2" …; 
useful if parameters contain spaces

countlines_paramsSept 10, 2018 Sprenkle - CSCI330



22

Special Characters
• The shell processes the following characters 

specially unless quoted:
Ø | & ( ) < > ; " ' $ ` space tab newline

• The following are special whenever patterns are 
processed:
Ø * ? [ ]

• The following are special at the beginning of a word:
Ø # ~

• The following is special when processing 
assignments:
Ø = 

70Sept 10, 2018 Sprenkle - CSCI330

Command Substitution: ``
• Used to turn the output of a command into a 

string
• Used to create arguments or variables

$ date
Mon Sep 10 11:46:37 EDT 2018
$ NOW=`date`
$ echo $NOW
Mon Sep 10 11:46:37 EDT 2018
$ PATH=`myscript`:$PATH

Sept 10, 2018 Sprenkle - CSCI330 71



23

Compound Commands
• Multiple commands

Ø Separated by semicolon or newline
• Command groupings

Øpipelines
• Subshell

Ø( command1; command2 ) > file
• Boolean operators
• Control structures

72Sept 10, 2018 Sprenkle - CSCI330

Program Development Process
• Divide & conquer: break the big programming 

problem into smaller subproblems
ØRecursively repeat as necessary

• Solve each subproblem & test for correctness
• In general, test your code after every change to 

catch bugs quickly & fix them easily
• Develop incrementally
• As the programs get bigger, periodically save 

working versions (script or version control)

Sept 10, 2018 Sprenkle - CSCI330 74



24

TODO
• Assign1 – due before class Friday

Ø Leverage the examples
• Next time: Reviewing C

Sept 10, 2018 Sprenkle - CSCI330 78


