
1

Today
• Reviewing C programming

ØPointers
• command line arguments

Ø Structs
Ø Standard Streams
ØDynamic Memory Allocation

• Make

Sept 14, 2018 Sprenkle - CSCI330 1

Review
• Describe the C language
• How do we create executables?
• How do you represent strings in C?

Sept 14, 2018 Sprenkle - CSCI330 2

2

My Goals for You and C
• Show you some good ways to do things
• Provide warnings about some easy ways to

screw up

Sept 14, 2018 Sprenkle - CSCI330 3

Review: C review – Data Types

Sept 14, 2018 Sprenkle - CSCI330 4

/*
* A review of the basic data types in C.
*/

#include <stdio.h>

int main() {
int x, y;
char a;
float f, e;
double d;

x = 4;
y = 7;
a = 'H';
f = -3.4;
d = 54.123456789;
e = 54.123456789;

printf("%d %c %f %lf\n", x, a, e, d);
printf("%d %c %.9f %.3lf\n", x, a, e, d);

}

datatypes_and_print.c

54.123456789 is too much
precision for float e to handle

4 H 54.123455 54.123457
4 H 54.123455048 54.123

Output:

3

Review: Strings, a.k.a. character arrays
• Example:
char a[6];
a[0] = 'H’ ';
a[1] = 'i';
a[2] = '!';
a[3] = '\0';

• String processing methods will stop when the
string delimiter, ‘\0’, is reached

Label Value
a[0] 'H'
a[1] 'i'
a[2] '!'
a[3] '\0'
a[4]
a[5]

Sept 14, 2018 Sprenkle - CSCI330 5

Make null character explicit;
don’t rely on the memory being 0’d out.
(Why isn’t the memory necessarily zero’d out?)

string.c

Declared but
not initialized

Initializing
values

Char by Char String Processing

Sept 14, 2018 Sprenkle - CSCI330 6

#include <stdio.h>
#include <string.h>

int main() {
int i, j;
char s[6];

s[0] = 'a';
s[1] = 'b';
s[2] = 'a';
s[3] = 'c';
s[4] = '\0';
printf("%s\n", s);
i = 0;
j = 0;
while (s[i] != '\0') {

if (s[i] != 'a') {
s[j] = s[i];
j++;

}
i++;

}
s[j] = '\0';
printf("%s\n", s);

}

• What is the output of
this program?

• What are more
descriptive names
for i and j?

charbychar.c

4

String Library Functions
•strlen: returns the number of characters in a

string (before the delimiter)
•strcmp: returns whether two strings:

Ø 0: are identical
Ø -1: first string smaller
Ø 1: second string smaller

•strcpy(dest, src): copies from src to dest
•strcat(orig, append): append a string to orig
•sprintf(a, “”,?): store printf output to string a

Sept 14, 2018 Sprenkle - CSCI330 7

POINTERS

Sept 14, 2018 Sprenkle - CSCI330 8

5

Pointers
• A pointer in C holds a memory address

Ø the value of a pointer is an address
Ø the value of the memory location pointed at can be obtained

by “dereferencing the pointer” (retrieving the contents of
that address)

Sept 14, 2018 Sprenkle - CSCI330 9

10004

address value
10000 ‘n’

10001 ‘c’

10002 ‘i’

10003 ‘s'

10004 ‘l’
10005 ‘a’

10006 ‘q’

pointer

dereferencing:
*p

p

Pointers
• Operators (unary, prefix):

& : “address of”
* : “dereference” or “value of”

• Example Declarations:
int *p; // p: pointer to an int
char **w; // w: pointer to a pointer to a char

• Spacing doesn’t matter
Ø I prefer to put the * next to the type during declarations, and

next to the name when using as an operator
int* p;
int x = 5;
p = &x;

Sept 14, 2018 Sprenkle - CSCI330 10

6

Using pointer-related operators
• If x is a variable, &x is the address of x

• If p is a pointer, *p is the value of whatever p
points to

• *(&p) º p always

Sept 14, 2018 Sprenkle - CSCI330 11

Pointer Arithmetic

• Incrementing a pointer causes it to point
to the next memory address, relative to
the size of the type
Ø for char* pointers, “+= 1” increments by 1

Ø for int* pointers, “+= 1” increments by 4

• if size of int is 4

• In general, “+= 1” will increment a
pointer by the size in bytes of the type
being pointed at

• Why? Portability:
Ø We want to be able to step through an

array of values without worrying about
architecture-dependent issues like int size

Sept 14, 2018 Sprenkle - CSCI330 13

address value
10000 ‘w’

10001 ‘l’

10002 00

10003 00

10004 07

10005 E2

10006 00

10007 00

10008 07

10009 E3

(Representing ints
2018 and 2019
as 4B in hex)

7

Arrays are really Pointers
• To pass an array as a parameter, you pass the

array name (i.e., a pointer)
• In C, arrays do not include size information

Ø The called function doesn’t know how big array is
• Solutions

Øpass the size of the array separately; or
Ø terminate the array with a known value (e.g., 0)

Sept 14, 2018 Sprenkle - CSCI330 14

Figuring out sizes: sizeof()
•sizeof() returns the total size of an array

Ø (but not the # of non-null elements)
• Be careful of implicit array/pointer conversions

Sept 14, 2018 Sprenkle - CSCI330 15

#include <stdio.h>

int function(int x[]) {
return sizeof(x);

}

int main() {
int a[20];
printf("sizeof(int) = %d; sizeof(a) = %d\n",

sizeof(int), sizeof(a));
printf("function returns %d\n", function(a));

}

sizeof.c

8

Figuring out sizes: sizeof()
•sizeof() returns the total size of an array

Ø (but not the # of non-null elements)
• Be careful of implicit array/pointer conversions

Sept 14, 2018 Sprenkle - CSCI330 16

#include <stdio.h>

int function(int x[]) {
return sizeof(x);

}

int main() {
int a[20];
printf("sizeof(int) = %d; sizeof(a) = %d\n",

sizeof(int), sizeof(a));
printf("function returns %d\n", function(a));

}

what is passed to
function() is a

pointer, not the
whole array

sizeof.c

Figuring out sizes: sizeof()
•sizeof() returns the total size of an array

Ø (but not the # of non-null elements)
• Be careful of implicit array/pointer conversions

Sept 14, 2018 Sprenkle - CSCI330 17

#include <stdio.h>

int function(int x[]) {
return sizeof(x);

}

int main() {
int a[20];
printf("sizeof(int) = %d; sizeof(a) = %d\n",

sizeof(int), sizeof(a));
printf("function returns %d\n", function(a));

}

what is passed to
function() is a pointer, not

the whole array
-- size of address is 8 bytes

sizeof(int) = 4; sizeof(a) = 80
function returns 8

9

How do you read input into a C program?

Sept 14, 2018 Sprenkle - CSCI330 18

scanf() and pointers
• scanf: the input equivalent to printf’s output
• scanf takes 2 parameters:

Ø a format string with conversion specifications (%d, %s, etc.)
that says what kind of value is being read in;

Ø a pointer to (i.e., the address of) a memory area where the
value is to be placed

• Reading in an integer:
int x;
scanf("%d", &x); // &x = address of x

• Reading in a string:
char str[…];
scanf("%s", str); // str = address of the

// array str
Sept 14, 2018 Sprenkle - CSCI330 19

10

Dereferencing & updating pointers
• A common C idiom is to use an expression that

Ø gives the value of what a pointer is pointing at; and
Ø updates the pointer to point to the next element:

*p++

Ø similarly: *p--

Sept 14, 2018 Sprenkle - CSCI330 20

Interpreted as: *p then p++

Sept 14, 2018 Sprenkle - CSCI330 21

#include <stdio.h>

int main() {
int iarray[100];
int n, num, status, sum, i;
int* iptr;

iptr = iarray;
n=0;

while(n < 100) {
status = scanf("%d", &num);
if(status == 0 || num == 0) {

break;
}
*iptr++ = num;
n++;

}

for(iptr = iarray, sum=0; n > 0; n--) {
sum += *iptr++;

}

printf("sum = %d\n", sum);
}

Walking a pointer
through an array

array_walk.c

11

Sept 14, 2018 Sprenkle - CSCI330 22

#include <stdio.h>

int main() {
int iarray[100];
int n, num, status, sum, i;
int* iptr;

iptr = iarray;
n=0;

while(n < 100) {
status = scanf("%d", &num);
if(status == 0 || num == 0) {

break;
}
*iptr++ = num;
n++;

}

for(iptr = iarray, sum=0; n > 0; n--) {
sum += *iptr++;

}

printf("sum = %d\n", sum);
}

Walking a pointer
through an array

dereference the pointer
to access memory,
then increment the pointer

Process the integer inputs and
put them in the iarray

Add up those values in iarray

Command line arguments

Sept 14, 2018 Sprenkle - CSCI330 23

/* Print out the command line arguments
* - they are an array of strings
*/

#include <stdio.h>
#include <string.h>

int main(int argc, char *argv[]) {
int i, j;

for (i = 0; i < argc; i++) {
j = 0;
while (argv[i][j] != '\0') {

printf("%c", argv[i][j]);
j++;

}
printf("\n");

}

for (i = 0; i < argc; i++)
printf("%s\n", argv[i]);

}

12

Two common pointer problems
• Uninitialized pointers

Ø the pointer is not initialized to point to a valid
location

• Dangling pointers
Ø the pointer points to a memory location that has

been deallocated
• Out of scope à seg fault

Sept 14, 2018 Sprenkle - CSCI330 24

Using Pointers: Passing by Reference
• What if you want to return multiple values from a

function?
Ø Java: encapsulate data in a class
Ø C: encapsulate with a struct; OR
Ø Pass by reference (pointer)!

• Example:

Sept 14, 2018 Sprenkle - CSCI330 25

int division(int numerator, int denominator,
int* dividend, int* remainder) {

if (denominator < 1)
return 0;

*dividend=numerator/denominator;
*remainder=numerator%denominator;

}

int main() {
int d,r;
division(9,2,&d,&r);

}

13

Dynamic memory allocation
• We can’t always anticipate how much

memory to allocate at compile time
Ø too little Þ program doesn’t work
Ø too much Þ wastes space

• Solution: allocate memory at runtime
as necessary
Ømalloc(), calloc()

• allocates memory in the heap
area

Ø free()
• deallocates previously allocated

heap memory block
Sept 14, 2018 Sprenkle - CSCI330 26

program memory layout

reserved

code

global variables, strings

heap

stack

reserved

low addr

high addr

Dynamic memory allocation: usage
• void *malloc(size_t size);
• void *calloc(size_t nmemb, size_t
size);
Ø “clear” the memory

• Example usage:
Ø int* iptr = malloc(sizeof(int));

• one int
Ø char* str = malloc(64);

• an array of 64 chars, sizeof(char) = 1
Ø int* iarr = calloc(40, sizeof(int));

• a 0-initialized array of 40 ints
Sept 14, 2018 Sprenkle - CSCI330 27

void * : “generic pointer”

14

Sept 14, 2018 Sprenkle - CSCI330 28

#include <stdio.h>
#include <stdlib.h>
void readVec(int size, int vec[]);
// computes the dot product of two integer vectors,
// each of size size
int dotprod(int *vec1, int *vec2, int size) {

int i, dp;
for(i=0, dp=0; i < size; i++) {

dp += vec1[i] * vec2[i];
}
return dp;

}
int main() {

int *vec1, *vec2, size;
scanf("%d", &size);
vec1 = malloc(size*sizeof(int));
vec2 = malloc(size*sizeof(int));
if(vec1 == NULL || vec2 == NULL) { // error check

fprintf(stderr, "Out of memory!\n");
return 1;

}
readVec(size, vec1); readVec(size, vec2);
printf("dot product = %d\n", dotprod(vec1, vec2, size));

}

Dynamic memory
allocation example

ALWAYS check the return value of
any system call that may fail

STRUCTS

Sept 14, 2018 Sprenkle - CSCI330 29

15

Structs
• A struct is

Ø an aggregate data structure (i.e., a collection of
data)

Ø can contain components (“fields”) of different types
• Whereas arrays contain elements of the same type

Ø fields are accessed by name
• Whereas array elements are accessed by index position

• A struct can only contain data, not code

Sept 14, 2018 Sprenkle - CSCI330 30

Declaring structs
• A node for a linked list of integers:

struct node {
int val;
struct node *next;

}

Sept 14, 2018 Sprenkle - CSCI330 31

optional “structure tag”
refers to the structure

struct node

val

next

struct node

16

Accessing structure fields
• Given a struct s

containing a field f ,
to access f we write

s.f
Example:

typedef struct {
int count, bar[10];

} foo;
foo x, y;
x.count = y.bar[3];

• Given a pointer p to a
struct s containing a
field f, to access f we
write

p->f // eqvt. to: (*p).f
Example:

typedef struct {
int count, bar[10];

} foo;
foo *p, *q;
p->count = q->bar[3];

32

declares x, y to be
variables of type
“struct foo”Sept 14, 2018 Sprenkle - CSCI330

STREAMS IN C

Sept 14, 2018 Sprenkle - CSCI330 33

17

Streams in C
• A stream is any source of input or any

destination for output
Ø conceptually, just a sequence of bytes
Ø accessed through a file pointer, type FILE*
Ønot all streams are associated with files

34Sept 14, 2018 Sprenkle - CSCI330

Standard Streams
• 3 predefined streams (FILE*) in C with stdio.h

Østdin: “standard input” - usually, keyboard input
Østdout: “standard output” - usually, the screen
Østderr: “standard error” - for error messages

(usually, the screen)
• These can be redirected to other sources

35Sept 14, 2018 Sprenkle - CSCI330

18

Typical structure of I/O operations
A program’s I/O operations typically have the

following structure:
1. Open a file
2. Perform I/O
3. Close the file

36

fopen

fprintf, fscanf,
fread, fwrite,
fgets

fclose

Sept 14, 2018 Sprenkle - CSCI330

Opening a file
FILE* fopen(char * filename, char * mode)

37

name of file to open

�r� read

�w� write (file need not exist)

�a� append (file need not exist)

�r+� read and write, starting at
the beginning

�w+
�

read and write; truncate
file if it exists

�a+� read and write; append if
file exists

file pointer for the stream,
if fopen succeeds;
NULL otherwise

Sept 14, 2018 Sprenkle - CSCI330

19

Closing a file
int fclose(FILE *fp)

38

file pointer for
stream to be closed

return value:
0 if the file was closed successfully;
EOF otherwise

Sept 14, 2018 Sprenkle - CSCI330

Example Code Structure
FILE *fp;
…
fp = fopen(filename, �r�);

if (fp == NULL) {
… give error message and exit …

}
… read and process file …
int status = fclose(fp);
if (status == EOF) {

… give error message…
}

39Sept 14, 2018 Sprenkle - CSCI330

20

Buffering
• Sometimes program output isn’t synchronized

between multiple output streams (like stdout &
stderr)

• Using a newline ‘\n’ in printf helps, but does not
always force

• Use fflush(stream) to force any remaining
characters out of the buffer (even without a
newline)

Sept 14, 2018 Sprenkle - CSCI330 40

Reading and writing
• fprintf, fscanf

Ø similar to printf and scanf, with additional FILE*
argument

• fread(ptr, sz, num, fp)
Ø reads num elements, each of size sz, from stream fp and

stores them at ptr
Ø does not distinguish between end-of-file and error

• use feof() and ferror()
• fwrite(ptr, sz, num, fp)

Ø writes num elements, of size sz, from ptr into stream fp
• return values:

Ø no. of items successfully read/written (not no. of bytes)

41Sept 14, 2018 Sprenkle - CSCI330

21

C, in Summary
• Compiled, statically typed
• Data types: int, char, float, double

(short, long, signed, unsigned)
ØWhat’s missing?

• Pointer-related operations: *, &
ØCan do arithmetic on pointers

• Arrays are pointers
• Libraries, functions available

Sept 14, 2018 Sprenkle - CSCI330 42

C PROGRAM ORGANIZATION &
DEVELOPMENT USING MAKE

Sept 14, 2018 Sprenkle - CSCI330 43

22

Compiling multi-file programs

44

file1.c gcc OPTS -c file1.o

file2.c gcc OPTS -c

gcc OPTS -cfileN.c fileN.o

file2.o

… gcc executable

Sept 14, 2018 Sprenkle - CSCI330

Compiling multi-file programs

45

file1.o

fileN.o

file2.o
gcc executable

source files
Only one of these files contains main()

Sept 14, 2018 Sprenkle - CSCI330

file1.c gcc OPTS -c

file2.c gcc OPTS -c

gcc OPTS -cfileN.c

…

23

Compiling multi-file programs

46

file1.o

fileN.o

file2.o
gcc executable

Sept 14, 2018 Sprenkle - CSCI330

file1.c gcc OPTS -c

file2.c gcc OPTS -c

gcc OPTS -cfileN.c

…

gcc -c
compile to a linkable object
& don't worry about main()

Compiling multi-file programs

47

file1.o

fileN.o

file2.o
gcc executable

Sept 14, 2018 Sprenkle - CSCI330

file1.c gcc OPTS -c

file2.c gcc OPTS -c

gcc OPTS -cfileN.c

…

object files
machine code, but not executable

24

Compiling multi-file programs

48

file1.o

fileN.o

file2.o
gcc executable

Sept 14, 2018 Sprenkle - CSCI330

file1.c gcc OPTS -c

file2.c gcc OPTS -c

gcc OPTS -cfileN.c

…

linker invocation
combines various *.o files together

Functions from special libraries
• Some library code is not linked in by default

Ø Examples: sqrt, ceil, sin, cos, tan, log, … [math
library]

Ø requires specifying to the compiler/linker that the
math library needs to be linked in
• you do this by adding “-lm” at the end of the

compiler invocation:
gcc -Wall foo.c -lm

• Libraries that need to be linked in explicitly like
this are indicated in the man pages

Sept 14, 2018 Sprenkle - CSCI330 49

linker command
to add math library

25

Structuring large applications
• So far, all of our programs have involved a single

source file
Ø impractical for large(r) programs
Ø even where practical, may not be good from a design

perspective
• If an application is broken up into multiple files,

we need to manage the build process:
Øhow do we (re)compile the various different files

that make up the application?

Sept 14, 2018 Sprenkle - CSCI330 50

Structuring large applications
• When one file is edited, other files may need to

be recompiled
Ø changes to typedefs or macros in header files
Ø changes to types of shared variables

• Applications can contain a lot of files
Ø E.g.: Linux kernel source code: ~ 4,900 files

• Recompiling all files whenever any file is changed
can be very time-consuming.

Sept 14, 2018 Sprenkle - CSCI330 51

26

Structuring large applications
• Idea: only recompile those files that need to be

recompiled – but which are those?

Sept 14, 2018 Sprenkle - CSCI330 52

Structuring large applications
• Idea: only recompile those files that may be

affected by a change.

Sept 14, 2018 Sprenkle - CSCI330 53
changed

affected

27

Structuring large applications
• “Smart recompilation” : issues

Øneed to be able to express & keep track of
dependencies between files

Ø “dependency” » which files affected by a change to
another?

Øneed to recompile all (and only) affected files
• doing this manually is tedious and error-prone
• want an automated solution

•make: a tool to automatically recompile based
on user-specified dependencies

Sept 14, 2018 Sprenkle - CSCI330 54

Makefiles
• Makefiles specify:

Ødependencies between files
Øhow to update dependent files

Sept 14, 2018 Sprenkle - CSCI330 55

28

Makefiles
• Makefiles specify:

Ødependencies between files
Øhow to update dependent files

Sept 14, 2018 Sprenkle - CSCI330 56

dependency

how to update the
dependent file to
satisfy this dependency

Makefiles
• Makefiles specify:

Ødependencies between files
Øhow to update dependent files

Sept 14, 2018 Sprenkle - CSCI330 57

dependency

how to update the
dependent file to
satisfy this dependency

29

Makefiles: structure
Structure of a make file:

Definitions (optional)
target … : prerequisites …

command
command
. . .

Sept 14, 2018 Sprenkle - CSCI330 58

\t (tab)

\t (tab)

target: (usually) the
name of a file that is
created by a program

prerequisite: a file used
as input to create the
target

rule

command: an action
carried out by make
to (re)construct target

Makefiles: an elementary example
Dependency structure:

Sept 14, 2018 Sprenkle - CSCI330 59

make file:

spellcheck.c

spellcheck.h

spellcheck

include

compiledependencies

spellcheck: spellcheck.c spellcheck.h
gcc –Wall spellcheck.c

must be a tab!

30

Makefiles: dependencies
Dependency structure:

Sept 14, 2018 Sprenkle - CSCI330 60

spellcheck.c

spellcheck.h

spellcheck

include

compiledependencies

why is this not a dependency?

Makefiles: another example
execFile : file1.o file2.o

gcc file1.o file2.o -o execFile
file1.o : file1.c hdrfile1.h

gcc -Wall -g -c file1.c
file2.o : file2.c hdrfile1.h hdrfile2.h

gcc -Wall -g -c file2.c

Sept 14, 2018 Sprenkle - CSCI330 61

Notice any similarities
between the rules?

31

Makefiles: Definitions
• Definitions make make files easier to maintain
• define: Name = replacement list
• use: $(Name)
• Example:

Sept 14, 2018 Sprenkle - CSCI330 62

CC = gcc
OPTLEV = –O2 # optimization level
CFLAGS = –Wall –g –D DEBUG $(OPTLEV) – c
. . .
file1.o : file1.c hdrfile1.h

$(CC) $(CFLAGS) file1.c

Makefiles: Automatic Variables

• Automatic Variables make it easy to write

default rules

Ø%: indicates pattern rule in file name

Ø $@: target file name

Ø $<: first dependency

• Example:

Sept 14, 2018 Sprenkle - CSCI330 63

CC = gcc
CFLAGS = –Wall –g –D DEBUG

%.o : %.c
$(CC) -c $(CFLAGS) $< -o $@

32

Using make
Invocation:

make [-f makeFileName] [target]

Sept 14, 2018 Sprenkle - CSCI330 64

default:
make searches (in order) for:

makefile
Makefile

default:
builds the first target
in the make file

How make works
• When invoked, begins processing the appropriate

target
• For each target, considers the prerequisites it

depends on:
target : file1 file2 …

Ø checks (recursively) whether each of filei (1) exists and
(2) is more recent than the files that filei depends on;
• if not, executes the associated command(s) to update filei

Ø checks whether target exists and is more recent that filei
• if not, executes the commands associated with target

65Sept 14, 2018 Sprenkle - CSCI330

33

Phony Targets

• A phony target is not the name of a file:

•make clean will remove a.out and *.o files

• Can put any bash commands here

phony targetclean:

rm –f *.o a.out

Sept 14, 2018 Sprenkle - CSCI330 66

More on Make
• make has a lot of functionality, e.g.:

Ø implicit rules
Ø implicit variables
Ø conditional parts of make files
Ø recursively running make in subdirectories

• See online make tutorials for more information

67Sept 14, 2018 Sprenkle - CSCI330

34

Looking Ahead
• C assignment due Wednesday
• Monday – more core OS discussion

Sept 14, 2018 Sprenkle - CSCI330 68

