
1

Today
• Review: C
• Process abstraction
• Dual mode execution

Sept 17, 2018 Sprenkle - CSCI330 1

Review
• What are the standard streams?

ØHow do you refer to them in C?
• What is a struct?

ØHow do you refer to the fields in a struct?
• What is make?

ØHow do you execute make?

Sept 17, 2018 Sprenkle - CSCI330 2

2

Review: Using make
Invocation:
make [-f makeFileName] [target]

Sept 17, 2018 Sprenkle - CSCI330 3

default:
make searches (in order) for:

makefile
Makefile

default:
builds the first target
in the make file

Understand the example given in assign2

Using files in C
FILE *fp;
…
fp = fopen(filename, �r�);

if (fp == NULL) {
… give error message and exit …

}
… read and process file …
int status = fclose(fp);
if (status == EOF) {

… give error message…
}

4Sept 17, 2018 Sprenkle - CSCI330

3

Using files in C
FILE *fp;
…
fp = fopen(filename, �r�);

if (fp == NULL) {
… give error message and exit …

}
… read and process file …
int status = fclose(fp);
if (status == EOF) {

… give error message…
}

5Sept 17, 2018 Sprenkle - CSCI330

We need error checking in C.

Review: C Pointers
• Consider the following function definition:

void my_function(char* my_ptr)
What can my_ptr point to?

a) One character
b) An array of characters
c) Either one character or an array of characters

Sept 17, 2018 Sprenkle - CSCI330 6

4

Review: C Pointers
• Consider the following function definition:

void my_function(char* my_ptr)
What can my_ptr point to?

a) One character
b) An array of characters
c) Either one character or an array of characters

Sept 17, 2018 Sprenkle - CSCI330 7

struct Example

Sept 17, 2018 Sprenkle - CSCI330 8

struct TIME {
int seconds; int mins; int hours;

};

void differenceBetweenTimePeriod(struct TIME start,
struct TIME stop, struct TIME *diff) {

if(stop.seconds > start.seconds){
start.mins--;
start.seconds += 60;

}
diff->seconds = start.seconds - stop.seconds;
if(stop.mins > start.mins){
start.hours--;
start.mins += 60;

}
diff->mins = start.mins - stop.mins;
diff->hours = start.hours - stop.hours;

}

What does this code do?
How would the function be used?

5

Example Use

Sept 17, 2018 Sprenkle - CSCI330 9

int main() {
struct TIME startTime, stopTime, diff;

printf("Enter start time: \n");
printf("Enter hours, minutes and seconds respectively: ");
scanf("%d %d %d", &startTime.hours, &startTime.mins,

&startTime.seconds);

printf("Enter stop time: \n");
printf("Enter hours, minutes and seconds respectively: ");
scanf("%d %d %d", &stopTime.hours, &stopTime.mins,

&stopTime.seconds);

differenceBetweenTimePeriod(startTime, stopTime, &diff);
printf("\nTIME DIFFERENCE: %d:%d:%d - ", startTime.hours,

startTime.mins, startTime.seconds);
printf("%d:%d:%d ", stopTime.hours, stopTime.mins,

stopTime.seconds);
printf("= %d:%d:%d\n", diff.hours, diff.mins, diff.seconds);
return 0;

}

OPERATING SYSTEMS

Sept 17, 2018 Sprenkle - CSCI330 10

6

Genealogy of Modern
Operating Systems

Sept 17, 2018 Sprenkle - CSCI330 11

OS X

The Kernel
• Today, all “real” operating systems have protected kernels

Ø The kernel resides in a well-known file
• the “machine” automatically loads it into memory (boots) on

power-on/reset
Ø Our “kernel” is called the executive in some systems

• The kernel is (mostly) a library of service procedures
shared by all user programs, but the kernel is protected:
Ø User code cannot access internal kernel data structures

directly, and it can invoke the kernel only at well-defined
entry points (system calls).

• Kernel code is like user code, but the kernel is privileged:
Ø The kernel has direct access to all hardware functions, and

defines the entry points of handlers for interrupts and
exceptions (traps and faults).

Sept 17, 2018 Sprenkle - CSCI330 12

More on all of this later…

7

Terminology: Kernel vs. OS
• “OS” & “Kernel” - interchangeable in this course
• Compiled Linux kernel: ~5-10 MB
• Fully installed system - a few GB

ØMostly user-level programs that get executed as
processes

Ø System utilities, graphical window system, shell, text
editor, etc.

Sept 17, 2018 Sprenkle - CSCI330 13

OPERATING SYSTEMS: DUAL MODE

Sept 17, 2018 Sprenkle - CSCI330 14

8

Review: OS Interfaces
• Abstract Machine Interface (AMI)

ØOS’s representation of the machine
Øbetween OS and apps: API + memory access model +

legally executable instructions
• Application Programming Interface (API)

Ø function calls provided to apps
• Hardware Abstraction Layer (HAL)

Ø abstracts hardware internally to the OS

Why do we need these interfaces?

Sept 17, 2018 Sprenkle - CSCI330 15

Sept 17, 2018 Sprenkle - CSCI330 16

9

If Applications Had Free Rein…
Buggy or malicious applications could:

Ø crash other applications
Ø violate privacy of other applications
Øhog all the resources
Ø change the OS
Ø crash the OS

We would be trusting every software developer!

Sept 17, 2018 Sprenkle - CSCI330 17

PROCESS ABSTRACTION

Sept 17, 2018 Sprenkle - CSCI330 18

10

Primary Abstraction: The Process
• Abstraction of a running program

Ø a dynamic “program in execution”
Ø Program = static file (image)
Ø Process = executing program = program + execution

state

• Program: blueprint
• Process: constructed building

• Program: class
• Process: instance

Sept 17, 2018 Sprenkle - CSCI330 19

The Process: Boxes in the Application
• An abstraction for

protection
Ø Represents an application

program executing with
restricted rights

• Restricting rights must
not hinder functionality
Ø Must still allow efficient

use of hardware

Sept 17, 2018 Sprenkle - CSCI330 20

11

The Process: Boxes in the Application
• An abstraction for

protection
Ø Represents an application

program executing with
restricted rights

• Restricting rights must
not hinder functionality
Ø Must still allow efficient

use of hardware
Ø Must still enable safe

communication

Sept 17, 2018 Sprenkle - CSCI330 21

What is a Process?
• A process is

ØA program during execution
Ø The basic unit of execution in an OS

• Different processes may run different instances
of the same program
Ø e.g., my gcc and your gcc process both run the GNU

C compiler

• At a minimum, process execution requires
ØMemory to contain the program code and data
ØA set of CPU registers to support execution

Sept 17, 2018 Sprenkle - CSCI330 22

12

• CPU: Central Processing
Unit

• PC points to next
instruction

• CPU loads instruction,
decodes it, executes it,
stores result

• Process “given” CPU by OS
Ø Mechanism: context switch
Ø Policy: CPU scheduling

Data in

Data in

Data in

Data in

Process Resource: CPU Time

32-bit Register #0WE
32-bit Register #1WE
32-bit Register #2WE
32-bit Register #3

WE …

MUX

MUX

Register File

A
L
U

Program Counter (PC): Memory address of next instr

Instruction Register (IR): Instruction contents (bits)

Sept 17, 2018 Sprenkle - CSCI330 23

Process Resource: CPU Time
• CPU: Central Processing

Unit
• PC points to next

instruction
• CPU loads instruction,

decodes it, executes it,
stores result

• Process “given” CPU by OS
Ø Mechanism: context switch
Ø Policy: CPU scheduling

Program Counter (PC): Memory address of next instr

Instruction Register (IR): Instruction contents (bits)

Sept 17, 2018 Sprenkle - CSCI330 24

Required for process to execute
and make progress!

Data in

Data in

Data in

Data in

32-bit Register #0WE
32-bit Register #1WE
32-bit Register #2WE
32-bit Register #3

WE …

MUX

MUX

Register File

A
L
U

13

Looking Ahead
• Assignment 2 – due Friday before class
• Dual Execution

Sept 17, 2018 Sprenkle - CSCI330 25

