
Today
• Booting
• Process abstraction
• Dual mode execution

Sept 19, 2018 Sprenkle - CSCI330 1



Course Objectives Review
• Classical OS

Ø Emphasis on the why
• Agile class
• Synching with the Project

Sept 19, 2018 Sprenkle - CSCI330 2

https://www.facebook.com/groups/169380229860838/

https://www.facebook.com/groups/169380229860838/


Review
• What do we call the core of the OS?

Sept 19, 2018 Sprenkle - CSCI330 3



BOOTING
How do we get the OS party started?

Sept 19, 2018 Sprenkle - CSCI330 4



System Boot
• Booting: Loading the kernel to render a computer usable
• When power initialized on system, execution starts at a 
fixed memory location
Ø Firmware ROM used to hold initial boot code

• OS must be available to hardware so hardware can start it
Ø Small piece of code – bootstrap loader—locates the kernel, 

loads it into memory, and starts it
• stored in ROM or EEPROM

Ø Sometimes two-step process where boot block at fixed 
location loaded by ROM code, which loads bootstrap loader 
from disk

• Common bootstrap loader, GRUB, allows selection of 
kernel from multiple disks, versions, kernel options

• Kernel loads and system is then running

Sept 19, 2018 Sprenkle - CSCI330 5



Booting

Sept 19, 2018 Sprenkle - CSCI330 6

Bootloader
OS kernel

Application

(1) BIOS copies
bootloader

(2) Bootloader
copies OS kernel

(3) OS kernel 
copies application

Physical
Memory

BIOS
Bootloader
instructions 

and data
OS kernel 

instructions
and data

Application 
instructions 

and data



Basic Input/Output System (BIOS)

• A number of small programs and subroutines:

Ø Power on self test (POST)

Ø System configuration utility

• Settings stored in small amount of battery backed CMOS 

memory.

Ø A set of routines for performing basic operations on 
common input/output devices. Such as…

• Read/write a specified C:H:S from disk

• Read character from keyboard

• Display character on the screen

Ø OS bootstrap program

• Stored on a Flash ROM that is part of the computer’s 

address space.

Sept 19, 2018 Sprenkle - CSCI330 7



Bootstrap Process
• Program Counter (PC) is initialized to the address of the POST 

program contained in the BIOS
• The last instruction of the POST jumps to the address of the 

bootstrap program, also contained in the BIOS.
• The bootstrap program uses the BIOS routines to load a 

program contained in the Master Boot Record (MBR) of the 
boot disk into memory at a known address.
Ø MBR = first sector on the disk (512 bytes).
Ø Boot disk is identified by data stored in the configuration CMOS.

• The last instruction in the bootstrap program jumps to the 
address at which the MBR program was loaded. 

• The MBR program loads the OS kernel.
Ø Often indirectly by loading another program (a secondary boot 

loader) that then loads the kernel

Sept 19, 2018 Sprenkle - CSCI330 8



Booting

Sept 19, 2018 Sprenkle - CSCI330 9

Bootloader
OS kernel

Application

(1) BIOS copies
bootloader

(2) Bootloader
copies OS kernel

(3) OS kernel 
copies application

Physical
Memory

BIOS
Bootloader
instructions 

and data
OS kernel 

instructions
and data

Application 
instructions 

and data



Design Questions

• Why don’t we store the whole kernel in ROM?

ØWhy do we need a bootloader?

• Consider:

ØWhat are the characteristics of ROM?

ØWhat are the characteristics of the kernel?

Sept 19, 2018 Sprenkle - CSCI330 10



Design Questions

• Why don’t we store the whole kernel in ROM?
ØWhy do we need a bootloader?

• Issues
Ø Size of kernel

ØUpdatability of kernel
• What happens if there is an error in kernel?

ØROM – slow, expensive, small

• Common solution: Add a level of indirection

Sept 19, 2018 Sprenkle - CSCI330 11

"All problems in computer science can be solved by 
another level of indirection.” – David Wheeler
(except for too many levels of indirection)



Review
• What goals do the interfaces of the OS enable?
• What is the basic unit of execution in an OS?
• What resources does that unit require? 

Sept 19, 2018 Sprenkle - CSCI330 12



Goals for the Process: 
Boxes in the Application

• An abstraction for 
protection
Ø Represents an application 

program executing with 
restricted rights

• Restricting rights must 
not hinder functionality
Ø Must still allow efficient 

use of hardware
Ø Must still enable safe 

communication 

Sept 19, 2018 Sprenkle - CSCI330 13



• CPU: Central Processing 
Unit

• PC points to next 
instruction

• CPU loads instruction, 
decodes it, executes it, 
stores result

• Process “given” CPU by OS
Ø Mechanism: context switch
Ø Policy: CPU scheduling

Data in

Data in

Data in

Data in

Process Resource: CPU Time

32-bit Register #0WE
32-bit Register #1WE
32-bit Register #2WE
32-bit Register #3

WE …

MUX

MUX

Register File

A
L
U

Program Counter (PC): Memory address of next instr

Instruction Register (IR): Instruction contents (bits)

Sept 19, 2018 Sprenkle - CSCI330 14



Process Resource: CPU Time
• CPU: Central Processing 

Unit
• PC points to next 

instruction
• CPU loads instruction, 

decodes it, executes it, 
stores result

• Process “given” CPU by OS
Ø Mechanism: context switch
Ø Policy: CPU scheduling

Program Counter (PC): Memory address of next instr

Instruction Register (IR): Instruction contents (bits)

Sept 19, 2018 Sprenkle - CSCI330 15

Required for process to execute 
and make progress!

Data in

Data in

Data in

Data in

32-bit Register #0WE
32-bit Register #1WE
32-bit Register #2WE
32-bit Register #3

WE …

MUX

MUX

Register File

A
L
U



Sept 19, 2018 Sprenkle - CSCI330 16



Process Resource: Main Memory
• Process must store:

Ø Text: code instructions
Ø Data: global and static (known at 

compile time) variables
Ø Heap: dynamically requested 

memory at runtime
(malloc, new, etc.)

Ø Stack: store local variables and 
compiler-generated
function call state (e.g., saved 
registers)

Sept 19, 2018 Sprenkle - CSCI330 17

0x0

0xFFFFFFFF

Operating system

Stack

Text
Data

Heap

Why do the heap and stack grow towards each other?
What would an alternative organization look like?



Process Resource: Main Memory
• Process must store:

Ø Text: code instructions
Ø Data: global and static (known at 

compile time) variables
Ø Heap: dynamically requested 

memory at runtime
(malloc, new, etc.)

Ø Stack: store local variables and 
compiler-generated
function call state (e.g., saved 
registers)

Sept 19, 2018 Sprenkle - CSCI330 18

0x0

0xFFFFFFFF

Operating system

Stack

Text
Data

Heap

Required for process 
to store instructions (+data)!

Represents 32 bits 
à 232 locations



Process Resource: I/O

• Allows processes to interact with a

variety of devices (i.e., everything that

isn’t a CPU or main memory).

• Enables files, communication,

human interaction, etc.

• Learn about or change the state of

the outside world.

Sept 19, 2018 Sprenkle - CSCI330 19

Disk

Wireless 
Network

Keyboard / 
Mouse

Does a process require I/O?



HOW CAN THE OS ENFORCE 
RESTRICTED RIGHTS?

Sept 19, 2018 Sprenkle - CSCI330 20



How can the OS enforce restricted rights?

• Consider: OS interprets each instruction

Ø Every instruction must be validated/executed by the 

[privileged] OS

• Good solution?

ØNo! Slow

ØMost instructions are safe: can we just run them in 

hardware?

Sept 19, 2018 Sprenkle - CSCI330 21



How can the OS enforce restricted rights?

• Consider: Dual Mode Execution
ØUser mode: access is restricted
ØKernel mode: access is unrestricted
Ø Supported by the hardware

• Mode is indicated by a bit in the process status 
register

Sept 19, 2018 Sprenkle - CSCI330 22



Process Modes: User and Kernel

OS
User

Kernel

Applications

Hardware

Compiler, editor, shell, utilities, libraries

Process management, device drivers, system calls

Interrupts

Sept 19, 2018 Sprenkle - CSCI330 23



Process Modes: User and Kernel

OS
User

Kernel

Applications

Hardware

Compiler, editor, shell, utilities, libraries

Process management, device drivers, system calls

Interrupts

Sept 19, 2018 Sprenkle - CSCI330 24

trusted

untrusted

• core of the OS
• code and data 

structures that are 
protected, 
can be accessed only 
in the kernel mode Mode stored in a register



Kernel vs. Userspace: Model

Text

Data

Stack

Text

Data

Stack

Text

Data

Stack

…

KernelSystem

Calls
write

read

fork

System

Management
Scheduling

Context

Switching

OS OS

Heap
Heap

OS

Heap

Process 1 Process 2 Process N

Sept 19, 2018 Sprenkle - CSCI330 26



Kernel vs. User Mode:
Privileged Instructions
• User processes may not:

Ø address I/O directly
Øuse instructions that manipulate the OS’s memory 

(e.g., page tables)
Ø set the mode bits that determine user or kernel 

mode
Ødisable and enable interrupts
Øhalt the machine

• But in kernel mode, the OS does all these things.

Sept 19, 2018 Sprenkle - CSCI330 27



OS: Taking Control of the CPU
The terminology here is, unfortunately, muddy

1.System call/Trap – user requests service from 
the OS

2.Exception – user process has done something 
that requires help

3.(Hardware) interrupt – a device needs attention 
from the OS

System call often implemented as a special case of exception: 
execute intentional exception-generating instruction.

Sept 19, 2018 Sprenkle - CSCI330 28



SYSTEM CALLS & LIBRARIES

Sept 19, 2018 Sprenkle - CSCI330 31



How system calls work

C Runtime Library
Operating System 

Kernel

Application Program Device Driver

User-space Kernel-space

Sept 19, 2018 Sprenkle - CSCI330 32
Synchronous request



Common Functionality
• Some functions useful to many programs

Ø I/O device control
ØMemory allocation

• Place these functions in kernel
Ø Explicitly called by programs (system calls)
ØOr accessed implicitly as needed (exceptions)

• Design questions: 
ØWhat should these functions be?
ØHow many programs should benefit?
ØMight kernel get too big?

Sept 19, 2018 Sprenkle - CSCI330 33



How about a function like printf()?
Recall: What does printf() do?

A.printf() is a system call (why?)

B.printf() is not a system call (why not, what 
is it?)

Sept 19, 2018 Sprenkle - CSCI330 34



Why make system calls?
A.Reliability: Kernel code always behaves the 

same.
B.Security: Programs can’t use kernel code in 

unintended ways.
C.Usability: Kernel code is easier / adds value for 

programmers to use.
D.More than one of the above.
E.Some other reason(s).

Sept 19, 2018 Sprenkle - CSCI330 35



Looking Ahead
• Git
• Project 1 Introduction

Sept 19, 2018 Sprenkle - CSCI330 36


