
Today
• Booting
• Process abstraction
• Dual mode execution
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Course Objectives Review
• Classical OS

Ø Emphasis on the why
• Agile class
• Synching with the Project
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https://www.facebook.com/groups/169380229860838/

https://www.facebook.com/groups/169380229860838/


Review
• What do we call the core of the OS?
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BOOTING
How do we get the OS party started?
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System Boot
• Booting: Loading the kernel to render a computer usable
• When power initialized on system, execution starts at a 
fixed memory location
Ø Firmware ROM used to hold initial boot code

• OS must be available to hardware so hardware can start it
Ø Small piece of code – bootstrap loader—locates the kernel, 

loads it into memory, and starts it
• stored in ROM or EEPROM

Ø Sometimes two-step process where boot block at fixed 
location loaded by ROM code, which loads bootstrap loader 
from disk

• Common bootstrap loader, GRUB, allows selection of 
kernel from multiple disks, versions, kernel options

• Kernel loads and system is then running
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Booting
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Basic Input/Output System (BIOS)

• A number of small programs and subroutines:

Ø Power on self test (POST)

Ø System configuration utility

• Settings stored in small amount of battery backed CMOS 

memory.

Ø A set of routines for performing basic operations on 
common input/output devices. Such as…

• Read/write a specified C:H:S from disk

• Read character from keyboard

• Display character on the screen

Ø OS bootstrap program

• Stored on a Flash ROM that is part of the computer’s 

address space.
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Bootstrap Process
• Program Counter (PC) is initialized to the address of the POST 

program contained in the BIOS
• The last instruction of the POST jumps to the address of the 

bootstrap program, also contained in the BIOS.
• The bootstrap program uses the BIOS routines to load a 

program contained in the Master Boot Record (MBR) of the 
boot disk into memory at a known address.
Ø MBR = first sector on the disk (512 bytes).
Ø Boot disk is identified by data stored in the configuration CMOS.

• The last instruction in the bootstrap program jumps to the 
address at which the MBR program was loaded. 

• The MBR program loads the OS kernel.
Ø Often indirectly by loading another program (a secondary boot 

loader) that then loads the kernel
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Booting
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Design Questions

• Why don’t we store the whole kernel in ROM?

ØWhy do we need a bootloader?

• Consider:

ØWhat are the characteristics of ROM?

ØWhat are the characteristics of the kernel?
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Design Questions

• Why don’t we store the whole kernel in ROM?
ØWhy do we need a bootloader?

• Issues
Ø Size of kernel

ØUpdatability of kernel
• What happens if there is an error in kernel?

ØROM – slow, expensive, small

• Common solution: Add a level of indirection
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"All problems in computer science can be solved by 
another level of indirection.” – David Wheeler
(except for too many levels of indirection)



Review
• What goals do the interfaces of the OS enable?
• What is the basic unit of execution in an OS?
• What resources does that unit require? 
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Goals for the Process: 
Boxes in the Application

• An abstraction for 
protection
Ø Represents an application 

program executing with 
restricted rights

• Restricting rights must 
not hinder functionality
Ø Must still allow efficient 

use of hardware
Ø Must still enable safe 

communication 
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• CPU: Central Processing 
Unit

• PC points to next 
instruction

• CPU loads instruction, 
decodes it, executes it, 
stores result

• Process “given” CPU by OS
Ø Mechanism: context switch
Ø Policy: CPU scheduling
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Program Counter (PC): Memory address of next instr

Instruction Register (IR): Instruction contents (bits)
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Process Resource: CPU Time
• CPU: Central Processing 

Unit
• PC points to next 

instruction
• CPU loads instruction, 

decodes it, executes it, 
stores result

• Process “given” CPU by OS
Ø Mechanism: context switch
Ø Policy: CPU scheduling

Program Counter (PC): Memory address of next instr

Instruction Register (IR): Instruction contents (bits)
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Required for process to execute 
and make progress!
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Process Resource: Main Memory
• Process must store:

Ø Text: code instructions
Ø Data: global and static (known at 

compile time) variables
Ø Heap: dynamically requested 

memory at runtime
(malloc, new, etc.)

Ø Stack: store local variables and 
compiler-generated
function call state (e.g., saved 
registers)
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Why do the heap and stack grow towards each other?
What would an alternative organization look like?



Process Resource: Main Memory
• Process must store:

Ø Text: code instructions
Ø Data: global and static (known at 

compile time) variables
Ø Heap: dynamically requested 

memory at runtime
(malloc, new, etc.)

Ø Stack: store local variables and 
compiler-generated
function call state (e.g., saved 
registers)
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Process Resource: I/O

• Allows processes to interact with a

variety of devices (i.e., everything that

isn’t a CPU or main memory).

• Enables files, communication,

human interaction, etc.

• Learn about or change the state of

the outside world.
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HOW CAN THE OS ENFORCE 
RESTRICTED RIGHTS?
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How can the OS enforce restricted rights?

• Consider: OS interprets each instruction

Ø Every instruction must be validated/executed by the 

[privileged] OS

• Good solution?

ØNo! Slow

ØMost instructions are safe: can we just run them in 

hardware?
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How can the OS enforce restricted rights?

• Consider: Dual Mode Execution
ØUser mode: access is restricted
ØKernel mode: access is unrestricted
Ø Supported by the hardware

• Mode is indicated by a bit in the process status 
register
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Process Modes: User and Kernel
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Interrupts
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Process Modes: User and Kernel
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trusted

untrusted

• core of the OS
• code and data 

structures that are 
protected, 
can be accessed only 
in the kernel mode Mode stored in a register



Kernel vs. Userspace: Model

Text

Data

Stack

Text

Data

Stack

Text

Data

Stack

…

KernelSystem

Calls
write

read

fork

System

Management
Scheduling

Context

Switching

OS OS

Heap
Heap

OS

Heap

Process 1 Process 2 Process N

Sept 19, 2018 Sprenkle - CSCI330 26



Kernel vs. User Mode:
Privileged Instructions
• User processes may not:

Ø address I/O directly
Øuse instructions that manipulate the OS’s memory 

(e.g., page tables)
Ø set the mode bits that determine user or kernel 

mode
Ødisable and enable interrupts
Øhalt the machine

• But in kernel mode, the OS does all these things.

Sept 19, 2018 Sprenkle - CSCI330 27



OS: Taking Control of the CPU
The terminology here is, unfortunately, muddy

1.System call/Trap – user requests service from 
the OS

2.Exception – user process has done something 
that requires help

3.(Hardware) interrupt – a device needs attention 
from the OS

System call often implemented as a special case of exception: 
execute intentional exception-generating instruction.
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SYSTEM CALLS & LIBRARIES
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How system calls work

C Runtime Library
Operating System 

Kernel

Application Program Device Driver

User-space Kernel-space
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Synchronous request



Common Functionality
• Some functions useful to many programs

Ø I/O device control
ØMemory allocation

• Place these functions in kernel
Ø Explicitly called by programs (system calls)
ØOr accessed implicitly as needed (exceptions)

• Design questions: 
ØWhat should these functions be?
ØHow many programs should benefit?
ØMight kernel get too big?
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How about a function like printf()?
Recall: What does printf() do?

A.printf() is a system call (why?)

B.printf() is not a system call (why not, what 
is it?)
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Why make system calls?
A.Reliability: Kernel code always behaves the 

same.
B.Security: Programs can’t use kernel code in 

unintended ways.
C.Usability: Kernel code is easier / adds value for 

programmers to use.
D.More than one of the above.
E.Some other reason(s).
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Looking Ahead
• Git
• Project 1 Introduction
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