
1

Today
• Preparing for Project 1

ØC for gcc vs bcc
ØHex in C
ØGit

Sept 21, 2018 Sprenkle - CSCI330 1

Assign 2 Review
• Code from main.c

Sept 21, 2018 Sprenkle - CSCI330 2

char buffer[30];
…
if (*buffer == '.')

break;

buffer is an array but it’s being compared to a character.
Why does this work?
What is the real condition for when our program stops reading
in input?

2

Example of a Level of Indirection
• Output to stdout OR a file

Sept 21, 2018 Sprenkle - CSCI330 3

FILE* output = stdout;
// default behavior

…
case ‘f’:

char* filename = *argv + 2
output = fopen(filename, “w”);
break;

…
fprint(output, “output”);

output points to the desired output stream

Use Piazza

Sept 21, 2018 Sprenkle - CSCI330 4

3

Review
• What are the two modes that the OS can run in?
• Why do these two modes exist?
• How can we switch between the two modes?
• How does a computer boot?

Sept 21, 2018 Sprenkle - CSCI330 5

Our OS Project

• “Build an operating system from scratch: a
project for an introductory operating systems
course” by Michael Black

• 6 Projects:

ØProject #1 – Introduction and Booting

ØProject #2 – System calls

ØProject #3 – Loading & Executing Programs +

Command Line Shell

ØProject #4 – Writing Files + Improved Shell

ØProject #5 – Processes and Multiprogramming

Sept 21, 2018 Sprenkle - CSCI330 6

Build on each other

4

Intel Architecture Bootstrap Process
• Machine starts in 16-bit real mode

Ø 16-bit registers, 20-bit memory addresses
• Extend range of addressable memory locations beyond

what was possible using 16-bit addresses
• Instruction Pointer (IP) initialized to address of BIOS

bootstrap
Ø 0xFFFF0

• BIOS bootstrap program runs
Ø Loads sector 0 from boot disk at 0x07C00

• Sector 0 C:H:S = 0:0:1 ß starts at 1!
• C:H:S = Cylinder:Head:Section addressing

Ø Jumps to 0x07C00

Sept 21, 2018 Sprenkle - CSCI330 7

16-bit Real Mode Memory Map

Sept 21, 2018 Sprenkle - CSCI330 8

0xFFFFF (BIOS bootstrap)
BIOS

Extended BIOS
Memory Mapped I/O
Legacy Video RAM

Available RAM

Bootloader

Interrupt Vector

0xA0000

0x00000
0x00400

Read from sector
0 on boot disk

0x07c00

5

Segmented Memory Access

in 16-bit Real Mode
• Registers hold 16 bits but memory addresses are

20 bits (?!??!!)

• All addresses have 2 parts:

Ø Segment – 16 bits

ØOffset – 16 bits

• E.g. 0x1000 : 0xABCD

• Computing the actual address:

Øaddress = segment*0x10 + offset
• Add extra 0 to right of segment and add offset.

• E.g. 0x1ABCD

segment offset

Sept 21, 2018 Sprenkle - CSCI330 9

bcc

• We’ll be using bcc to compile our programs
Øbcc – Bruce’s C Compiler

• Produces 8086 executables that can run in 16-
bit real mode

• Understands original K&R C Syntax + a few
extensions if the –ansi flag is used
ØK&R = Brian Kernighan and Dennis Ritchie

Ø 1978 – The C Programming Language

Sept 21, 2018 Sprenkle - CSCI330 10

6

My First (bcc) C Program

• Execution begins in main function.
• Don’t get used to using printf or stdio.h!

#include "stdio.h"

int main() {
printf("Hello World!");

}

Sept 21, 2018 Sprenkle - CSCI330 11

Variables

• All local variables must be declared at start of
block.
Ø Immediately following {

int main() {
int i=0;
int x=2;

printf("Numbers Divisible by %d\n", x);
for (i=0; i<10; i++) {
if (i % x == 0) {
printf("%d ", i);

}
}
printf("\n");

}

Sept 21, 2018 Sprenkle - CSCI330 12

7

Integer Data

• Integer Types:
Ø int 16-bit 2’s complement
Ø char 8-bit 2’s complement

• Can mix decimal and hex values.

int main() {
int a=171;
int b=0x00AB;

char c = 15;
char d = 0x0F;

if (a == b && c == d) {
printf ("OK!\n");

}
}

Sept 21, 2018 Sprenkle - CSCI330 13

Character Data

• char values can be specified:
ØUsing single quotes (‘A’)
ØUsing ASCII values

int main() {
char ch1 = 'A';
char ch2 = 'B';

if (ch1 == 'A' && ch2 == 66) {
printf ("OK!\n");

}
}

Sept 21, 2018 Sprenkle - CSCI330 14

8

Function Prototypes

• Functions must be declared before
they are called.
Ø A prototype is included before main.
Ø Function names may not be overloaded.

int indexOf(char *str, char ch);
main() {
char *str = "Abc123!\0";
int index = indexOf(str, '2');
printf("%d\n",index);

}
int indexOf(char *str, char ch) {
int i=0;
while(str[i] != ch) {
if (str[i] == '\0') {
return -1;

}
i++;

}
return i;

}

Sept 21, 2018 Sprenkle - CSCI330 15

BITS & BYTES
and conversions

Sept 21, 2018 Sprenkle - CSCI330 16

9

Data Storage with Bits

• All data stored in bits (binary digits): 0/1, T/F

• Byte = 8 bits

• A byte can store 0 − 255

• 4 bytes (a word) can store 0 − 232-1 (≈4.3M)

• 32-bit architecture = max 4 GB memory

where each memory location is a byte (8 bits)

0 0 0 1 0 0 1 1
27 26 25 24 23 22 21 20

128 64 32 16 8 4 2 1
=19

Sept 21, 2018 Sprenkle - CSCI330 17

Endian Order
• We’ve been writing the most significant bits

to the left, following the mathematic
convention

• But where are the most significant bits/bytes
stored? Left to right or right to left?

• Important for parsing & memory layout

Byte 3 Byte 2 Byte 1 Byte 0 Byte 0 Byte 1 Byte 2 Byte 3

Little Endian Big Endian

Sept 21, 2018 Sprenkle - CSCI330 18

10

Counting in Number Systems
Decimal Binary Octal Hexadecimal

0 00000 00 0x0

1 00001 01 0x1

2 00010 02 0x2

3 00011 03 0x3

4 00100 04 0x4

5 00101 05 0x5

6 00110 06 0x6

7 00111 07 0x7

8 01000 010 0x8

9 01001 011 0x9

10 01010 012 0xA

11 01011 013 0xB

12 01100 014 0xC

13 01101 015 0xD

14 01110 016 0xE

15 01111 017 0xF

16 10000 020 0x10

17 10001 021 0x11

18 10010 022 0x12

19 10011 023 0x13

In C
• Octal begins

with a 0
• Hexademical

begins with 0x
• Addresses

usually in hex

Sept 21, 2018 Sprenkle - CSCI330 19

Number Conversion Self-Assessment
• Convert 1100 binary to hexidecimal
• Convert 11001100 binary to hexadecimal

Sept 21, 2018 Sprenkle - CSCI330 20

11

Number Conversion Self-Assessment
• Convert 1100 binary to hexadecimal

Ø 1100 à 12 à C à 0xC
• Convert 11001100 binary to hexadecimal

Ø 0xCC
ØNote that the above number is a byte

• A byte has a higher ”nibble” and a lower “nibble”
• Bytes are made up for two hexadecimal numbers

Sept 21, 2018 Sprenkle - CSCI330 21

GIT
Version control

Sept 21, 2018 Sprenkle - CSCI330 24

12

Git Review
• What is version control for?
• What are the basic operations for version

control?
• What are the operations for git specifically?

Sept 21, 2018 Sprenkle - CSCI330 25

Common Git Commands
Command What it does
add [file] Adds the file to the staging area
commit Commits all the staged files (locally)
push Push all your changes to the remote à You need your code to

be pushed so that I can see it.
branch List all local branches
branch [name] Creates a new branch with that name

Sept 21, 2018 Sprenkle - CSCI330 26

13

Typical, Simple Workflow
• Clone the project
• Update files
• When you’ve hit a good checkpoint, add the

changed files to the “staging area” and then
commit those files
ØAdd a descriptive comment about what you’ve done.

• If you are ready to put your code on GitHub
(doesn’t need to be complete), push
Ø I recommend doing this at least at the end of every

“work session”
Sept 21, 2018 Sprenkle - CSCI330 27

Looking Ahead

• Project 1: Due Tuesday, October 2 at 11:59:59
ØBy Wednesday, you should be able to display an ‘A’

in the top left of your emulated screen.

• Approximation of learning curve
Ø Start early!

Sept 21, 2018 Sprenkle - CSCI330 28

