
Today
• System debugging
• Dual Mode
• Processes

ØHandling interrupts

Sept 24, 2018 Sprenkle - CSCI330 1

Review
• What are the benefits of version control?
• How is the bcc-compatible version of C different

from the gcc-compatible version of C?

Sept 24, 2018 Sprenkle - CSCI330 2

DEBUGGING
What is your debugging process?

Sept 24, 2018 Sprenkle - CSCI330 3

Debugging as Engineering

• Much of your time in this course will be spent
debugging
Ø In industry, 50% of software dev is debugging

Ø Even more for kernel development

• How do you reduce time spent debugging?
ØProduce working code with smallest effort

• Optimize a process involving you, code,
computer

Sept 24, 2018 Sprenkle - CSCI330 4

Kernighan's Law: “Debugging is twice as hard as writing the code
in the first place. Therefore, if you write the code as cleverly as
possible, you are, by definition, not smart enough to debug it.”

Debugging as Science
• Understandingà design à code

Ø not the opposite
• Form a hypothesis that explains the bug

Ø Which tests work, which don’t? Why?
Ø Add tests to narrow possible outcomes – what’s the

minimal input required to fail the test & reproduce the
bug?

• Use best practices
Ø Always walk through your code line by line
Ø Unit tests – narrow scope of where problem is
Ø Develop code in stages, with dummy stubs for later

functionality
Sept 24, 2018 Sprenkle - CSCI330 5

Project 1
• Reload the Project 1 page whenever you return
• ~100 [final] lines of code

Ø More lines written along the way for testing various
pieces

• What should be in/updated in GitHub
Ø kernel.c
Ø Bash scripts and, optionally, Makefile

• What should not be in GitHub
Ø Executables, the floppy image, log files from bochs,

anything generated
• Your scripts should generate these, so they do not need to

be in GitHub
Sept 24, 2018 Sprenkle - CSCI330 6

DUAL MODE

Sept 24, 2018 Sprenkle - CSCI330 7

Review
• What is a process?

ØWhat resources does it require?
• Why do operating systems have dual modes?

ØWhat are those two modes?
• What causes a switch between the two modes?

Sept 24, 2018 Sprenkle - CSCI330 8

Process Modes

OS
User

Kernel

Applications

Hardware

Compiler, editor, shell, utilities, libraries

Process management, device drivers, system calls

Interrupts

Sept 24, 2018 Sprenkle - CSCI330 9

trusted

untrusted

• core of the OS
• code and data

structures that are
protected,
can be accessed only
in the kernel mode Mode stored in a register

OS is Interrupt-Driven
• Sits, waiting for something to happen

ØAlternative model: polling

• A trap or exception is a software-generated
interrupt caused by a user request or an error

Sept 24, 2018 Sprenkle - CSCI330 10

“Hey! Look at me!
I’m ready to do something!”

“Oopsies! I divided by 0!”

OSUser

Kernel

Applications

Hardware

Compiler, editor, shell, utilities, libraries

Process management, device drivers, system calls

Interrupts

trap: system call
user program requests.

Examples: open, close, read,
write, fork, exec, exit, wait,

kill

fault/exception
invalid or protected address

or opcode, page fault,
overflow, etc.

“software interrupt”
software requests an

interrupt to be delivered
at a later time

interrupt
caused by an external event
(not related to instruction

that just executed):
I/O op completed, clock tick,

power fail, etc.

synchronous
caused by an
instruction

asynchronous
caused by
some other

event

intentional
happens every time

unintentional
contributing factors

Exceptions: trap, fault, interrupt

Sept 24, 2018 Sprenkle - CSCI330 11

Discussion: Interrupts vs Polling
• Why should OS’s be interrupt-driven instead of

polling?

Sept 24, 2018 Sprenkle - CSCI330 12

How/When should the OS Kernel’s code
execute?
A. The kernel code is always executing.
B. The kernel code executes when a process asks it

to.
C. The kernel code executes when the hardware

needs it to.
D. The kernel code should execute as little as

possible.
E. The kernel code executes at some other time(s).

How/When should the OS Kernel’s code
execute?
A. The kernel code is always executing

Ø We don’t want the kernel executing à it is taking
valuable resources away from applications

B. The kernel code executes when a process asks it to.
Ø Yes, through system calls

C. The kernel code executes when the hardware
needs it to.
Ø Yes, through interrupts

D. The kernel code should execute as little as possible.
Ø Yes (see A)

E. The kernel code executes at some other time(s).

Same Question, Different Resource
• “How much of the system’s memory should the

OS use?”

• Hopefully not much… just enough to get its work
done.

• Leave the rest for the user!

Review: System Calls
• User programs are not allowed to access system

resources directly
Ømust ask OS to do that on their behalf

• System calls: set of functions for user programs
to request for OS services
ØRun in kernel mode
Ø Invoked by special instruction (trap/interrupt)

causing the kernel to switch form user mode
ØWhen the system call finishes, processor returns to

the user program and runs in user mode.

Sept 24, 2018 Sprenkle - CSCI330 16

Why should processes make system calls?

A.Reliability: Kernel code always behaves the
same.

B.Security: Programs can’t use kernel code or
devices in unintended ways.

C.Usability: Kernel code is easier / adds value for
programmers to use.

D.More than one of the above.
E.Some other reason(s).

Sept 24, 2018 Sprenkle - CSCI330 17

Why should processes make system calls?

A.Reliability: Kernel code always behaves the same.
Ø We kind of assume this property of the kernel

B.Security: Programs can’t use kernel code or devices
in unintended ways.

C.Usability: Kernel code is easier / adds value for
programmers to use.
Ø Adds common functionality that all apps benefits from

D.More than one of the above.
E. Some other reason(s).

Sept 24, 2018 Sprenkle - CSCI330 18

A & B & C
(so D!)

Review: Processes and Protection
• An abstraction for

protection
Ø Represents an application

program executing with
restricted rights

• Restricting rights must
not hinder functionality
Ø Must still allow efficient

use of hardware
Ø Must still enable safe

communication

Sept 19, 2018 Sprenkle - CSCI330 19

System Calls
• A request by a user-level

process to call a function in
the kernel is a system call
Ø Examples: read(), write(),

exit()
• The interface between the

application and the
operating system (API)
Ø Mostly accessed through

system-level libraries
• Parameters passed

according to calling
convention
Ø registers, stack, etc

Sept 24, 2018 Sprenkle - CSCI330 20Project 2

System Calls: A Closer Look
• User process executes a trap instruction
• Hardware calls the OS at the system-call handler, a

pre-specified location
• OS then:

Ø identifies the required service and parameters
• e.g., open(filename, O_RDONLY)

Ø executes the required service
Ø sets a register to contain the result of call
Ø Executes a Return from Interrupt (RTI) instruction to

return to the user program
• User program receives the result and continues

Sept 24, 2018 Sprenkle - CSCI330 21

System Calls: A Closer Look

Sept 24, 2018 Sprenkle - CSCI330 22

How do we take interrupts safely?
• Interrupt vector

Ø Limited number of entry points into kernel

• Atomic transfer of control
ØA single instruction changes:

• Program counter
• Stack pointer
• Memory protection
• Kernel/user mode

• Transparent restartable execution
ØUser program does not know interrupt occurred

Sept 24, 2018 Sprenkle - CSCI330 23

User Mode to Kernel Mode: Details
• OS saves state of user

program
• Hardware identifies why

boundary is crossed
Ø system call?
Ø interrupt? then which

hardware device?
Ø which exception?

• Hardware selects entry
from interrupt vector

• Appropriate handler is
invoked

Sept 24, 2018 Sprenkle - CSCI330 24Project 2

How Process Works

1. Interrupt transfers control to the interrupt service
routine (ISR)
Ø ISR is part of BIOS or OS

Ø Generally, transferred through the interrupt vector,
which contains the addresses of all the service routines

2. Interrupt architecture must save the address of the
interrupted instruction

3. Figure out which system call made

4. Verify parameters

5. Execute request

6. Back to the calling instruction.

Sept 24, 2018 Sprenkle - CSCI330 25

Vectored Interrupts
• Each device is assigned an interrupt request

number (IRQ).
• The device’s IRQ is used as an index into the

interrupt vector
Ø The value at each index is the address of the ISR

associated with the interrupt.

• The value from the interrupt vector is loaded
into the PC

Sept 24, 2018 Sprenkle - CSCI330 26

Saving the State of the Interrupted Process
• Privileged hw register points to Exception or
Interrupt Stack
Ø on switch, hw pushes some of interrupted process

registers (SP, PC, etc) on exception stack before handler
runs. Why?

Ø then handler pushes the rest
Ø On return, do the reverse

• Why not use user-level stack?
Ø reliability: even if user’s stack points to invalid address,

handlers continue to work
Ø security: kernel state should not be stored in user space

• could be read/written by user programs
• One interrupt stack per processor/process/thread

Sept 24, 2018 Sprenkle - CSCI330 27(stopped here)

Question
The interrupt vector is used to determine the

action taken by the OS when:
A. An exception occurs
B. An interrupt occurs
C. A system call is executed
D. All of the above
E. None of the above

Sept 24, 2018 Sprenkle - CSCI330 28

Switching Back!
• From an interrupt, just reverse all steps!

Ø asynchronous, so not related to executing instruction

• From exception and system call, increment PC on
return
Ø synchronous, so you want to execute the next

instruction, not the same one again!
Øon exception, handler changes PC at the base of the

stack
Øon system call, increment is done by the hardware

Sept 24, 2018 Sprenkle - CSCI330 29

Dual Mode Execution:
One Piece of the Protection Pie
• For efficient protection, the hardware must

support at least 3 features:
ØPrivileged instructions
Ø Timer interrupts
ØMemory protection

Sept 24, 2018 Sprenkle - CSCI330 30

Dual Mode Execution:

One Piece of the Protection Pie

• Privileged instructions

Ø Instructions only available in kernel mode

Ø In user mode, no way to execute potentially unsafe

instructions

ØPrevents user processes from, for instance, halting

the machine

Ø Implementation: mode status bit in the process

status register

Sept 24, 2018 Sprenkle - CSCI330 31

Dual Mode Execution:

One Piece of the Protection Pie

• Timer interrupts

ØKernel must be able to periodically regain control

from running process

ØPrevents process from gaining control of the CPU

and never releasing it

Ø Implementation: hardware timer can be set to expire

after a delay and pass control back to the kernel

Sept 24, 2018 Sprenkle - CSCI330 32

Sept 19, 2018 Sprenkle - CSCI330 33

Dual Mode Execution:
One Piece of the Protection Pie
• Memory protection

Ø In user mode, memory accesses outside a process’
memory region are prohibited

ØPrevents unauthorized access of data
Ø Implementation: We’ll return to this later in the

course

Sept 24, 2018 Sprenkle - CSCI330 34

Summary
• Operating System provides protection through

dual-mode execution
ØMode changes through interrupts (e.g., time slice),

exceptions, or system calls.
ØA status bit in a protected processor register

indicates the mode
ØPrivileged instructions can only be executed in kernel

mode

Sept 24, 2018 Sprenkle - CSCI330 35

