
1

Today
• Interrupt Handling
• Processes

Ø State
ØCreation

Sept 26, 2018 Sprenkle - CSCI330 1

http://PollEv.com/sarasprenkle

Project 1 Checkpoint
• Goal:

ØUnderstanding booting
ØWriting the letter ‘A’

• ~3 who haven’t created their GitHub repository
yet

• ~100 Lines of code
Ø Just an estimate
ØMine was around 86, including comments

• With notes about common problems
Ø Yours may be more streamlined

Sept 26, 2018 Sprenkle - CSCI330 2

2

Review
• The OS is interrupt-driven

ØWhat are examples of when interrupts are triggered?
ØWhy are interrupts used?
ØWhy is interrupt-driven a good way to design the

OS?
ØHow are interrupts handled?

• What are the goals for how interrupts are handled?

Sept 26, 2018 Sprenkle - CSCI330 3

trap: system call
user program requests.

Examples: open, close, read,
write, fork, exec, exit, wait,

kill

fault/exception
invalid or protected address

or opcode, page fault,
overflow, etc.

“software interrupt”
software requests an

interrupt to be delivered
at a later time

interrupt
caused by an external event
(not related to instruction

that just executed):
I/O op completed, clock tick,

power fail, etc.

synchronous
caused by an
instruction

asynchronous
caused by
some other

event

intentional
happens every time

unintentional
contributing factors

Review: Exceptions: trap, fault, interrupt

Sept 26, 2018 Sprenkle - CSCI330 4

3

Review: How do we take interrupts safely?

• Interrupt vector
Ø Limited number of entry points into kernel

• Atomic transfer of control
ØA single instruction changes:

• Program counter
• Stack pointer
• Memory protection
• Kernel/user mode

• Transparent restartable execution
ØUser program does not know interrupt occurred

Sept 26, 2018 Sprenkle - CSCI330 5

Review: User Mode to Kernel Mode: Details
• OS saves state of user

program
• Hardware identifies why

boundary is crossed
Ø system call?
Ø interrupt? then which

hardware device?
Ø which exception?

• Hardware selects entry
from interrupt vector

• Appropriate handler is
invoked

Sept 26, 2018 Sprenkle - CSCI330 6Project 2

4

Saving the State of the Interrupted Process
• Privileged hw register points to Exception or
Interrupt Stack
Ø on switch, hw pushes some of interrupted process

registers (SP, PC, etc) on exception stack before handler
runs. Why?

Ø then handler pushes the rest
Ø On return, do the reverse

• Why not use user-level stack?
Ø reliability: even if user’s stack points to invalid address,

handlers continue to work
Ø security: kernel state should not be stored in user space

• could be read/written by user programs
• One interrupt stack per processor/process/thread

Sept 26, 2018 Sprenkle - CSCI330 7

Sprenkle - CSCI330 8Sept 26, 2018

5

Question
The interrupt vector is used to determine the

action taken by the OS when:
A. An exception occurs
B. An interrupt occurs
C. A system call is executed
D. All of the above
E. None of the above

Sept 26, 2018 Sprenkle - CSCI330 9

http://pollev.com/sarasprenkle

Switching Back!
• From an interrupt, just reverse all steps!

Ø asynchronous, so not related to executing instruction
• From exception and system call, increment PC on

return
Ø synchronous, so you want to execute the next

instruction, not the same one again!
Øon exception, handler changes PC at the base of the

stack
Øon system call, increment is done by the hardware

Sept 26, 2018 Sprenkle - CSCI330 10

6

Dual Mode Execution:
One Piece of the Protection Pie
• For efficient protection, the hardware must

support at least 3 features:
ØPrivileged instructions
Ø Timer interrupts
ØMemory protection

Sept 26, 2018 Sprenkle - CSCI330 11

Dual Mode Execution:

One Piece of the Protection Pie

• Privileged instructions

Ø Instructions only available in kernel mode

Ø In user mode, no way to execute potentially unsafe

instructions

ØPrevents user processes from, for instance, halting

the machine

Ø Implementation: mode status bit in the process

status register

Sept 26, 2018 Sprenkle - CSCI330 12

7

Dual Mode Execution:

One Piece of the Protection Pie

• Timer interrupts

ØKernel must be able to periodically regain control

from running process

ØPrevents process from gaining control of the CPU

and never releasing it

Ø Implementation: hardware timer can be set to expire

after a delay and pass control back to the kernel

Sept 26, 2018 Sprenkle - CSCI330 13

Sept 26, 2018 Sprenkle - CSCI330 14

8

Dual Mode Execution:
One Piece of the Protection Pie
• Memory protection

Ø In user mode, memory accesses outside a process’
memory region are prohibited

ØPrevents unauthorized access of data
Ø Implementation: We’ll return to this later in the

course

Sept 26, 2018 Sprenkle - CSCI330 15

Dual-Mode Summary
• Operating System provides protection through

dual-mode execution
ØMode changes through interrupts (e.g., time slice),

exceptions, or system calls.
ØA status bit in a protected processor register

indicates the mode
ØPrivileged instructions can only be executed in kernel

mode

Sept 26, 2018 Sprenkle - CSCI330 16

So far: Approximately Chapters 1-2 with a bit of 3
Now onto more 3

9

PROCESSES
Deeper dive

Sept 26, 2018 Sprenkle - CSCI330 17

Review
• What is a process?

Sept 26, 2018 Sprenkle - CSCI330 18

10

Main OS Process-related Goals
• Overarching Challenge: how to implement &

ensure efficient use of system resources?

• Interleave the execution of existing processes to
maximize processor utilization

• Provide reasonable response times
• Allocate resources to processes
• Support inter-process communication,

synchronization, and user creation of processes

Sept 26, 2018 Sprenkle - CSCI330 19

Process Resources: Memory

• Abstraction: Virtual Address Space (VAS)

• Give every process the illusion of having

all of the system’s memory. (for convenience!)

• At process startup (fork+exec):

ØCode loaded from disk to text
Ø Static variables initialized in data
Ø Stack created in stack

Sept 26, 2018 Sprenkle - CSCI330 20

0x0

0xFFFFFFFF

Operating system

Stack

Text
Data

Heap

11

Process Resources: I/O

• Abstraction: File

• Old Unix adage: “Everything is a file”, including:
Ø files (duh)

Ø sockets (abstraction used for network
communication)

Øpipes (send the output of one process to the input of
another)

Ømost I/O devices (e.g., mouse, printer, graphics
card)*

*Not the only way to access these devices.

Sept 26, 2018 Sprenkle - CSCI330 21

I/O Resource Accounting
• For each process, OS maintains a file descriptor

table.
Ø Give integer file descriptor to process, store details in OS

• By default, all processes get stdin, stdout, stderr
• For anything else, explicitly ask the OS (e.g.,
open())

0

1

2

7

8

stdin stdout stderr

… Family: AF_INET, Type:
SOCK_STREAM
Local address: NULL,
Local port: NULL
Send buffer array,
Receive buffer array

/home/
file

printf is a
write() to FD 1
(stdout).

Sept 26, 2018 Sprenkle - CSCI330 22

12

Sprenkle - CSCI330 23Sept 26, 2018

Why treat all of these I/O things as files?
A.It’s less error-prone.

ØRestricted interfaces à less opportunities for errors
B.It provides higher performance.

ØAdding abstractions à slows it down but it’s worth it
C.It’s simpler to access all of them in the same

way.
ØDefinitely! We saw that with fprintf

D.More than one of these.

E.Some other reason(s).
Sept 26, 2018 Sprenkle - CSCI330 24

13

Device Interrupts
• Kernel needs to communicate with physical

devices
• Devices operate asynchronously from the CPU

ØPolling: Kernel checks some time period to check if
I/O is done (less efficient)

Ø Interrupts: Kernel can do other work in the
meantime

Sept 26, 2018 Sprenkle - CSCI330 25

Process State
• The code for running the program
• The Program Counter (PC) indicating the

next instruction
• An execution stack with the program’s call

chain (the stack) and the stack pointer (SP)
• The static data for running the program
• Space for dynamic data (the heap), the

heap pointer (HP)
• Values of CPU registers
• A set of OS resources in use (e.g., open

files)
• Process identifier (PID)
• Process execution state
• (and more)

0x0

0xFFFFFFFF

Operating system

Stack

Text
Data

Heap

Program Counter (PC): Memory address of next instr

Instruction Register (IR): Instruction contents (bits)

Sept 26, 2018 Sprenkle - CSCI330 26

(Italics – state not shown)

14

Process State
• The code for running the program
• The Program Counter (PC) indicating the

next instruction
• An execution stack with the program’s call

chain (the stack) and the stack pointer (SP)
• The static data for running the program
• Space for dynamic data (the heap), the

heap pointer (HP)
• Values of CPU registers
• A set of OS resources in use (e.g., open

files)
• Process identifier (PID)
• Process execution state
• (and more)

Operating system

Stack

Text
Data

Heap

Program Counter (PC): Memory address of next instr

Instruction Register (IR): Instruction contents (bits)

(Italics – state not shown)
Sept 26, 2018 Sprenkle - CSCI330 27

0x0

0xFFFFFFFF

Process Execution State
• “What can this process do right now?”
• Running: process is executing on the CPU
• Ready: process is ready to execute, but we have

to give it the CPU
• Waiting / blocked: process is waiting for
something to happen before it can continue.
ØDoes NO GOOD to schedule it.

Examples:
• Waiting for I/O to complete.
• Process needs to wait for exclusive resource (e.g., mutex).
• Process asks to be put to sleep for a while…

Sept 26, 2018 Sprenkle - CSCI330 28

15

Process Life Cycle
• Processes are always either running, ready to

run, or blocked waiting for an event to occur

RunningReady

Blocked

New Terminated

OS is setting
up process

state

OS is
destroying

this process

Ready to
run, but

waiting for
the CPU

Waiting for
an event to
complete

Executing
instructions
on the CPU

Sept 26, 2018 Sprenkle - CSCI330 29

Process Control Block (PCB)
• Kernel data structure kept in memory
• Represents the execution state and

location of each process when it is not
executing
Ø Process identification number, program

counter, stack pointer, contents of
general purpose registers, memory
management information (HP, etc),
username of owner, list of open files…

Ø Basically, any process execution state
that is not stored in the address space

• PCBs are initialized when a process is
created and deleted when a process
terminates

Sept 26, 2018 Sprenkle - CSCI330 30

16

Sprenkle - CSCI330 31Sept 26, 2018

Question
When a process is waiting for I/O, what is its

scheduling state?
A. Ready
B. Running
C. Blocked
D. Zombie
E. Exited

Sept 26, 2018 Sprenkle - CSCI330 32

17

Sprenkle - CSCI330 33Sept 26, 2018

It doesn’t make sense for a process to go

from___. Why not?
A.running to waiting/blocked

B.ready to waiting/blocked

C.ready to running

D.running to ready

Sept 26, 2018 Sprenkle - CSCI330 34

18

Creating a Process
• When a program begins running, the loader:

Ø reads and interprets the executable file
Ø sets up the process’s memory to contain the code & data from

executable
Ø pushes argc and argv on the stack
Ø sets the CPU registers properly and calls _start()

• Program starts running at _start()
_start(args) {

ret = main(args);
exit(ret)

}
Ø we say “process” is now running and no longer think of “program”

• When main() returns, OS calls exit() which destroys the process
and returns all resources
Ø unless the process calls exit() on its own

Sept 26, 2018 Sprenkle - CSCI330 35

How to Create a Process
• One process can create other processes

Ø The created processes are the child processes
Ø The creator is the parent process

• In some systems, the parent defines (or donates)
resources and privileges to its children

• The parent can either wait for the child to
complete or continue in parallel

Sept 26, 2018 Sprenkle - CSCI330 36

19

The essence of Unix process “fork”

fork

Oh Ghost of Walt, please don’t sue me.
Sept 26, 2018 Sprenkle - CSCI330 37

Sorcerer’s Apprentice Atari Game

Sept 26, 2018 Sprenkle - CSCI330 38

20

fork()
• In Unix, processes are created by fork()
•fork() copies a process into an (identical) process

Ø Copies variable values and program counter from parent
to child

Ø Returns twice: once to the parent and once to the child
• In parent, it is child process id
• In child, it is 0

Ø Both processes begin execution from the same point
• Immediately following the call to fork()

Ø Each process has its own memory and its own copy
of each variable
• Changes to variables in one process are not reflected in the

other!

Sept 26, 2018 Sprenkle - CSCI330 39

fork()

int pid;
int status = 0;

if (pid = fork()) {
/* parent */
…..

} else {
/* child */
…..
exit(status);

}

The fork syscall returns
twice:

1. It returns a zero in
the context of the
new child process.

2. It returns the new
child process ID (pid)
in the context of the
parent.

Sept 26, 2018 Sprenkle - CSCI330 40

21

fork() Pseudocode
pid_t fork_val = fork(); //create a child

if((fork_val == FORKERR) //FORKERR is #define-d to -1

printf(“Fork failed!\n”);

return EXIT_FAILURE;

else if(fork_val == 0) //fork_val != child’s PID

printf(“I am the child!”); //so child continues here

return EXIT_SUCCESS;

else

pid_t child_pid = fork_val //parent continues here

printf(“I’m the parent.”);

int status;

pid_t fin_pid = wait(&status); //wait for child to finish
Sept 26, 2018 Sprenkle - CSCI330 41

exit and wait
• exit(int rv)

Ø Causes the program to exit with the main function
returning the specified return value (rv).
• e.g. exit(-1);

Ø Reaching the end of the main function results in an
implicit exit(0).

• wait(int *status)
Ø Causes a process to wait until any one of its child

processes has completed.
Ø The waitpid system call can be used to wait for a

specific child process to complete.
Ø status is loaded with the return value from the child’s call

to exit. Use NULL to discard status.

Sept 26, 2018 Sprenkle - CSCI330 42

22

pid_t fork_val = fork();
if(fork_val == 0) {
printf(“Child!\n”);

} else {
wait();

pid_t fork_val = fork();
if(fork_val == 0) {
printf(“Child!\n”);

} else {
wait();

pid_t fork_val = fork();
if(fork_val == 0) {
printf(“Child!\n”);

} else {
wait();

pid_t fork_val = fork();
if(fork_val == 0) {
printf(“Child!\n”);

} else {
wait();

pid_t fork_val = fork();
if(fork_val == 0) {
printf(“Child!\n”);

} else {
wait();

pid_t fork_val = fork();
if(fork_val == 0) {
printf(“Child!\n”);

} else {
wait();

pid = 127pid = 127

Example: fork()

Process Control
Blocks (PCBs)

OS
USER

pid = 128

Sept 26, 2018 Sprenkle - CSCI330 43(stopped here)

pid = 127pid = 127

Example: fork()

int shell_main() {
int a = 2;
… Code

main; a = 2

Heap

Stack

0xFC0933CA
int shell_main() {
int a = 2;
… Code

main; a = 2

Heap

Stack

0xFC0933CA

pid = 128

Process Control
Blocks (PCBs)

OS
USER

Sept 26, 2018 Sprenkle - CSCI330 44

23

Ummm, okay, but….

Why do I want two copies of the same process?
What if I want to start a different process? How
do I do that?

Sept 26, 2018 Sprenkle - CSCI330 45

exec()
• Overlays a process with a new program

ØPID does not change
ØArguments to new program may be specified
ØCode, stack, and heap are overwritten

• Sometimes memory-mapped files are preserved

• Child processes often call exec() to start a
new and different program
ØNew program will begin at main()

• If call is successful, it is the same process, but it is
running a different program!

Sept 26, 2018 Sprenkle - CSCI330 46

24

fork() and exec(): Pseudocode

pid_t fork_val = fork(); //create a child

if((fork_val = fork()) == FORKERR)

printf(“Fork failed!\n”);

return EXIT_FAILURE;

else if(fork_val == 0) //child continues here

exec_status = exec(“calc”, argc, argv0, argv1, …);

printf(“Why would I execute?”); //should NOT execute

return EXIT_FAILURE;

else

pid_t child_pid = fork_val //parent continues here

printf(“I’m the parent.”);

int status;

pid_t fin_pid = wait(&status); //wait for child to finish

Sept 26, 2018 Sprenkle - CSCI330 47

Practical Usage: ps and kill
If you have a process running that you need to kill:

Ø From the command line, type:
ps –au <login_name>

Ø Find the process you would like to terminate (the name
is in the CMD column) and then determine its PID. You
can do this visually or use grep:
ps –au <login_name> | grep <program_name>

Ø From the command line, type:
kill -9 <PID>

Sept 26, 2018 Sprenkle - CSCI330 48

25

Looking Ahead
• Project 1 due Tuesday night
• Process scheduling

Sept 26, 2018 Sprenkle - CSCI330 49

