
1

Today
• Processes

ØCreation
ØManagement

Sept 28, 2018 Sprenkle - CSCI330 1

http://PollEv.com/sprenkle

Operating systems are like underwear —
nobody really wants to look at them.

-- Bill Joy
Co-Founder Sun Microsystems
Original author of vi

Review
• What are the 3 primary execution states of 

processes?
• How does the OS keep track of information 

about processes?
ØWhat is some of the info it keeps?

• How does a process create another process?
ØWhat are the characteristics of that newly created 

process?
ØWhat do we call a process that creates another 

process?
Sept 28, 2018 Sprenkle - CSCI330 2



2

Review: Process Life Cycle
• Processes are always either running, ready to 

run, or blocked waiting for an event to occur

RunningReady

Blocked

New Terminated

OS is setting 
up process 

state

OS is 
destroying 

this process

Ready to 
run, but 

waiting for 
the CPU

Waiting for 
an event to 
complete

Executing 
instructions 
on the CPU

Sept 28, 2018 Sprenkle - CSCI330 3

Review: Process Control Block (PCB)
• Kernel data structure kept in memory
• Represents the execution state and 

location of each process when it is not 
executing
Ø Process identification number, program 

counter, stack pointer, contents of 
general purpose registers, memory 
management information (HP, etc), 
username of owner, list of open files…

Ø Basically, any process execution state 
that is not stored in the address space

• PCBs are initialized when a process is 
created and deleted when a process 
terminates

Sept 28, 2018 Sprenkle - CSCI330 4



3

Review: fork() Pseudocode
pid_t fork_val = fork(); //create a child
if((fork_val == FORKERR) //FORKERR is #define-d to -1

printf(“Fork failed!\n”);
return EXIT_FAILURE; 

else if(fork_val == 0) //fork_val != child’s PID 
printf(“I am the child!”); //so child continues here
return EXIT_SUCCESS;

else 
pid_t child_pid = fork_val //parent continues here
printf(“I’m the parent.”);
int status;
pid_t fin_pid = wait(&status); //wait for child to finish

Sept 28, 2018 Sprenkle - CSCI330 5

Fork returns TWICE!
Once to child (with 0)
Once to parent (with child id)

exit and wait
• exit(int rv)

ØCauses the program to exit
Ømain function returns the specified return value (rv).

• e.g. exit(-1);
ØReaching the end of the main function results in an  
implicit exit(0).

Sept 28, 2018 Sprenkle - CSCI330 6



4

exit and wait
• exit(int rv)

Ø Causes the program to exit
Ø main function returns the specified return value (rv).

• e.g. exit(-1);
Ø Reaching the end of the main function results in an  implicit

exit(0).
• wait(int *status) 

Ø Causes a process to wait (block) until any one of its child 
processes has completed. 
• So that parent can get child’s return value

Ø The waitpid system call can be used to wait for a specific
child process to complete. 

Ø status is loaded with the return value from the child’s call to 
exit. Use NULL to discard status. 

Sept 28, 2018 Sprenkle - CSCI330 7

pid = 127pid = 127

Example: fork()

int shell_main() {
int a = 2;
… Code

main; a = 2

Heap

Stack

0xFC0933CA
int shell_main() {
int a = 2;
… Code

main; a = 2

Heap

Stack

0xFC0933CA

pid = 128

Process Control
Blocks (PCBs)

OS
USER

Sept 28, 2018 Sprenkle - CSCI330 8



5

Fork Problem

Sept 28, 2018 Sprenkle - CSCI330 9

int main() {
int x = 20;
int pid = fork();
int status;
if (pid != 0) {

printf("Parent's x before wait is %d\n",x);
x = x + 5;
wait(&status); 
printf("Parent's x after wait is %d\n",x);
printf("Parent’s child’s status is %d\n",

status);
} else {

printf("Child's x before sleep is %d\n",x);
sleep(3);
x = x + 10;
printf("Child's x after sleep is %d\n",x);

}
}

What will this program output?

fork_problem.c

Fork Problem

Sept 28, 2018 Sprenkle - CSCI330 10

int main() {
int x = 20;
int pid = fork();
int status;
if (pid != 0) {

printf("Parent's x before wait is %d\n",x);
x = x + 5;
wait(&status); 
printf("Parent's x after wait is %d\n",x);
printf("Parent’s child’s status is %d\n",

status);
} else {

printf("Child's x before sleep is %d\n",x);
sleep(3);
x = x + 10;
printf("Child's x after sleep is %d\n",x);

}
}

Parent's x before wait is 20
Child's x before sleep is 20
Child's x after sleep is 30
Parent's x after wait is 25
Parent's child's status is 0

Top two lines of output 
could be swapped.



6

Another Fork Program

Sept 28, 2018 Sprenkle - CSCI330 11

int main() {
int pid= fork();
int i, status;

if (pid != 0 ) {
for(i=0; i<10; i++) {

printf("Parent process %d running.\n", getpid());
sleep(1);

}
wait(&status);

}
else {

for(i=0; i < 10; i++) {
printf("Child process %d running.\n", getpid());
sleep(1);

}
}

}

getpid syscall:
Get processID of 
current process.

dueling_processes.c

What the fork?

int main() {
fork();
fork();
printf("Process %d exiting.\n", getpid());

}

How many times will this 
print statement be displayed?

Sept 28, 2018 Sprenkle - CSCI330 12

sixforks.c



7

Sprenkle - CSCI330 13Sept 28, 2018

What the fork?

int main() {
fork();
fork();
printf("Process %d exiting.\n", getpid());

}
How many times will this 

print statement be displayed? 4

Sept 28, 2018 Sprenkle - CSCI330 14

1. Main/Original process
2. Main’s first forked process
3. Main’s second forked process
4. Main’s first forked process’s child forked process



8

Likely Questions
• Why do I want two copies of the same process?
• What if I want to start a different process? 

Sept 28, 2018 Sprenkle - CSCI330 17

exec()
• Overlays a process with a new program

ØPID does not change

ØArguments to new program may be specified

ØCode, stack, and heap are overwritten

• Child processes often call exec() to start a 
new and different program

ØNew program will begin at main()
Ø There are a couple variations of exec

• If call is successful, it is the same process, but it 
is running a different program!

Sept 28, 2018 Sprenkle - CSCI330 18



9

fork() and exec(): Pseudocode

pid_t fork_val = fork(); //create a child

if((fork_val = fork()) == FORKERR)

printf(“Fork failed!\n”);

return EXIT_FAILURE; 

else if(fork_val == 0) //child continues here

exec_status = exec(“calc”, argc, argv0, argv1, …);

printf(“Why would I execute?”); //should NOT execute

return EXIT_FAILURE;

else 

pid_t child_pid = fork_val //parent continues here

printf(“I’m the parent.”);

int status;

pid_t fin_pid = wait(&status); //wait for child to finish

Sept 28, 2018 Sprenkle - CSCI330 19

pid_t fork_val = fork();
if(fork_val == 0) {
exec(“/bin/calc”);

} else {
wait();

pid = 127pid = 127

Example: fork() and exec()

Process Control
Blocks (PCBs)

OS
USER

int calc_main(){
int q = 7;
do_init();
ln = get_input();
exec_in(ln);

pid = 128

pid_t fork_val = fork();
if(fork_val == 0) {
exec(“/bin/calc”);

} else {
wait();

pid_t fork_val = fork();
if(fork_val == 0) {
exec(“/bin/calc”);

} else {
wait();

pid_t fork_val = fork();
if(fork_val == 0) {
exec(“/bin/calc”);

} else {
wait();

pid_t fork_val = fork();
if(fork_val == 0) {
exec(“/bin/calc”);

} else {
wait();

pid_t fork_val = fork();
if(fork_val == 0) {
exec(“/bin/calc”);

} else {
wait();

Sept 28, 2018 Sprenkle - CSCI330 20



10

pid = 127pid = 127

Example: fork() and exec()

int shell_main() {
int a = 2;
… Code

main; a = 2

Heap

Stack

0xFC0933CA
int shell_main() {
int a = 2;
… Code

main; a = 2

Heap

Stack

0xFC0933CA
int calc_main() {
int q = 7;
… Code

Heap

Stack

0x43178050

pid = 128

Process Control
Blocks (PCBs)

OS
USER

Sept 28, 2018 Sprenkle - CSCI330 21

Example

Sept 28, 2018 Sprenkle - CSCI330 22

int main() {
int pid = fork();
int status;
if (pid != 0) {

wait(&status); 
printf("Parent's child's status is %d\n", status);

} else { 
printf("Child: My process id is %d\n", getpid());
printf("Child: My parent process id is %d\n",

getppid());
char *args[]={"ps", NULL}; 
execvp(args[0], args); 
printf("Did I get here?\n");

}
}

exec_example.c



11

Sprenkle - CSCI330 23Sept 28, 2018

Question
What creates a process?

A.fork()
B.exec()
C. both

Sept 28, 2018 Sprenkle - CSCI330 24

Exec changes the existing process to run a different program



12

Zombie (or defunct) Processes
• Process has terminated

ØAll of process’s resources are cleaned up
Ø EXCEPT its PCB
ØDead, but not gone…
ØAll child processes go into this state, though, likely 

just briefly
• Parent process has not yet collected its status

ØParent hasn’t completed its call to wait

Sept 28, 2018 Sprenkle - CSCI330 25

pid = 127
Child process

pid = 128
Exit_status = 0

Orphaned Processes
• Parent terminates before the child:

Ø In some instances, the child becomes an orphan process
• In UNIX, parent automatically becomes the init process

Ø In other instances, all children are killed (depending on 
the shell)
• Bash kills all child processes when it receives a SIGHUP

• Child can orphan itself to keep running in the 
background
Ø nohup command (also prevents it from being killed when 

SIGHUP is sent)



13

The Unix Shell
• When you log in to a machine running Unix, the 

OS creates a shell process for you to use
• Every command you type into the shell is a child

of your shell process
Ø For example, if you type ls, the OS forks a new 

process and then execs ls
If you type an & after your command, Unix will run 

the process in parallel with your shell, otherwise 
your next shell command must wait until the first 
one completes.

Sept 28, 2018 Sprenkle - CSCI330 27

Practical Usage: ps and kill
If you have a process running that you need to kill:

Ø From the command line, type: 
ps –au <login_name>

Ø Find the process you would like to terminate (the name 
is in the CMD column) and then determine its PID.  You 
can do this visually or use grep:
ps –au <login_name> | grep <program_name>

Ø From the command line, type:
kill -9 <PID>

Sept 28, 2018 Sprenkle - CSCI330 28



14

Summary of Process Management

• A process is a unit of execution

• Processes are represented as Process Control 

Blocks in the OS

• At any time, a process is either New, Ready, 

Blocked, Running, or Terminated

• Processes are created and managed through 

system calls

Ø Fork, exec, wait, 

Sept 28, 2018 Sprenkle - CSCI330 29

Before Processes (or even OSes)

• Feed in program

• Wait for output

• Feed in next one…

Sept 28, 2018 Sprenkle - CSCI330 30

Run programs serially
What are the benefits of this model?



15

Looking Ahead
• Project 1 – Due Tuesday
• Monday: Scheduling Processes
• Project 2 coming out next week

Sept 28, 2018 Sprenkle - CSCI330 31


