
1

Today
• Scheduling Processes

Oct 1, 2018 Sprenkle - CSCI330 1

http://PollEv.com/sprenkle

Review
• How does a process create another process?

ØWhat are the characteristics of that other process?
• How do you make a process execute a different

program?
• How do you make a process wait for its child

process to finish?
• What causes a zombie process?
• What is serial execution? What are the benefits

and limitations of serial execution?

Oct 1, 2018 Sprenkle - CSCI330 2

2

Review: Process Management
• Fork

ØCreates a new process
• Copy of the original process, its state

ØReturns twice – once to parent, once to child
ØBoth processes start/continue executing after call to

fork()
• Wait

ØParent waits for one of its children to exit
• Can get the child’s exit status

• Exec
ØMake a process execute a different program

Oct 1, 2018 Sprenkle - CSCI330 3

Review: Zombie (or defunct) Processes

• Process has terminated
ØAll of process’s resources are cleaned up

Ø EXCEPT its PCB

ØDead, but not gone…

ØAll child processes go into this state, though, likely
just briefly

• Parent process has not yet collected its status
ØParent hasn’t completed its call to wait

Oct 1, 2018 Sprenkle - CSCI330 4

pid = 127
Child process

pid = 128
Exit_status = 0

3

Serial Execution

Benefits
• Simpler model
• Don’t need to worry about

conflicts between
applications
Ø (can’t accidentally touch

each other’s memory)

• Individual programs will
execute faster

Limitations
• It’s not really feasible for us

to only have one process
run at a time

• CPU is idle when process
needs I/O or is blocking for
some other reason

Oct 1, 2018 Sprenkle - CSCI330 5

Goal: Multiprogramming

• Multiprogramming: have multiple programs
available to the machine, even if you only have
one CPU core that can execute them.

• Switch between programs when there is
downtime

Text

Data

Stack

OS

Heap

Text

Data

Stack

OS

Heap

Text

Data

Stack

OS

Heap

Oct 1, 2018 Sprenkle - CSCI330 6

4

Goal: Multiprogramming
• Multiprogramming: have multiple programs available to

the machine, even if you only have one CPU that can
execute them

• When I/O requested by process, CPU not needed!
Ø Allow another program to run

• Other reasons that the process yields the CPU

• Challenge: machine is NOT exclusive to one executing
process
Ø What if one running program…

• Monopolizes CPU, memory?
• Reads/writes another’s memory?
• Uses I/O device being used by another?

Oct 1, 2018 Sprenkle - CSCI330 7

Foreshadowing …

CPU Scheduling 101

• The OS scheduler makes a sequence of “moves”

ØNext move: if a CPU core is idle, pick a ready thread

from the ready pool and dispatch it (run it).

Ø Scheduler’s choice is “nondeterministic”

Ø Scheduler and machine determine the interleaving of

execution (a schedule).

Wakeup GetNextToRun

ready pool
blocked

processes
If timer expires, or
wait/yield/terminate

Oct 1, 2018 Sprenkle - CSCI330 8

5

CPU’s Flow

ready
queue

(runqueue)

scheduler
getNextToRun() nothing

ready?

pause

got
process

sleep
exit

idle

timer
quantum
expired

run process
switch in switch out

Idle loop

put
process

Oct 1, 2018 Sprenkle - CSCI330 9

CPU’s Flow

ready
queue

(runqueue)

scheduler
getNextToRun() nothing

ready?

pause

got
process

sleep
exit

idle

timer
quantum
expired

run process
switch in switch out

Idle loop

put
process

Oct 1, 2018 Sprenkle - CSCI330 10

6

Switching

• What causes a CPU to switch out of the current
process?
ØProcess exits
Ø Timer interrupt: quantum expired
ØProcess needs a resource that isn’t available or I/O
ØProcess yields
Ø…?

• Switching takes time and resources

run process
switch in switch out

Oct 1, 2018 Sprenkle - CSCI330 11

Based on what we know about
dual mode, what does a “switch”
likely look like?

Switching

• What causes a CPU to switch out of the current
process?
Ø Process exits
Ø Timer interrupt: quantum expired
Ø Process needs a resource that isn’t available or I/O
Ø Process yields
Ø …?

• Switching takes time and resources
Ø Need to copy state so can start up again at the same

place

run process
switch in switch out

Oct 1, 2018 Sprenkle - CSCI330 12
Called a context switch—switching between process contexts

7

Context Switching: Performance

• Even though it’s fast, context switching is

expensive:

1. time spent is 100% overhead

2. must invalidate other processes’ resources (caches,

memory mappings)

3. kernel must execute – it must be accessible in

memory

• Solution to #3:

Ø keep kernel mapped in every process

VAS

Øprotect it to be inaccessible

0x0

0xFFFFFFFF

Operating system

Stack

Text
Data
Heap

Oct 1, 2018 Sprenkle - CSCI330 13

CPU’s Flow

ready
queue

(runqueue)

scheduler
getNextToRun() nothing?

pause

got
process

sleep
exit

idle

timer
quantum
expired

run process
switch in switch out

Idle loop

put
process

Oct 1, 2018 Sprenkle - CSCI330 14

8

CPU Scheduler Scenario

• One CPU

• Cards represent number of seconds for the

process to run

Ø (This info is not usually known a priori)
• When the scheduler “picks up”, all processes are

on the ready queue

Oct 1, 2018 Sprenkle - CSCI330 15

Exploring Scheduling Algorithms
• Requirements: Execute processes to completion
• What are some possible algorithms to schedule

the processes?
Ø Should be relatively simple – we need the scheduler

to be fast
Ø Should come up with at least 3 algorithms
ØWhat are the outcomes from the algorithms?

• Discuss their tradeoffs
ØWhat would be a “better” schedule?
ØHow do you measure “good”?

Oct 1, 2018 Sprenkle - CSCI330 16

9

A new option:
Non-Preemptive vs Preemptive
• Depending upon which scheduling opportunities

are used by a scheduler, the scheduling can be:
ØNon-Preemptive: The scheduler will allow the

running process to continue to run as long as it
remains ready (i.e., doesn’t block or exit).

ØPreemptive: The scheduler may set aside the
running process in favor or another at any scheduling
opportunity
• Enables time-sharing, priority scheduling

Oct 1, 2018 Sprenkle - CSCI330 17

Exploring Scheduling Algorithms
• Algorithm: Time slice: .5 seconds

ØAfter .5 seconds, boot the currently executing
process

ØAssume .1 seconds of switching cost/overhead
• Discuss:

ØWhat is a valid schedule?
ØWhat would be a “better” schedule?
ØHow do you measure “better”?

Oct 1, 2018 Sprenkle - CSCI330 18

10

Changing it up: Priority
• Cards now have a priority
• In Unix, “niceness”

Ø Highest priority: −20
Ø Lowest priority: 19
Ø Default: 0

• Processes inherit niceness from parent
• Cards:

Ø Clubs (lowest): 19
Ø Diamonds: 0
Ø Hearts: -2
Ø Spades: -20

Oct 1, 2018 Sprenkle - CSCI330 19

Impact of Priority
• Algorithm: Time slice: .5 seconds

ØAfter .5 seconds, boot the currently executing
process

ØAssume .1 seconds of switching cost/overhead
• Discuss:

ØHow do your metrics of “better” change?
ØHow do your algorithms change?

Oct 1, 2018 Sprenkle - CSCI330 20

11

Other considerations
• How would your recommendations change if the

time slice was 10 seconds? 1 minute?

• What other information would be helpful to
make decisions?

Oct 1, 2018 Sprenkle - CSCI330 21

Impact of System
• Consider how your algorithms would change if

your system is
Ø Super computer
ØNuclear power plant or medical device
Ø Your personal computer

• Discuss:
ØHow do your metrics of “better” change?

Oct 1, 2018 Sprenkle - CSCI330 22
(stopped here)

12

Sprenkle - CSCI330 23Oct 1, 2018

Looking Ahead
• Project 1 due tomorrow

Oct 1, 2018 Sprenkle - CSCI330 24

