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Today
• Scheduling Processes
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Review
• How does a process create another process?

ØWhat are the characteristics of that other process?
• How do you make a process execute a different 

program?
• How do you make a process wait for its child 

process to finish?
• What causes a zombie process?
• What is serial execution?  What are the benefits 

and limitations of serial execution?
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Review: Process Management
• Fork

ØCreates a new process
• Copy of the original process, its state

ØReturns twice – once to parent, once to child
ØBoth processes start/continue executing after call to 

fork()
• Wait

ØParent waits for one of its children to exit
• Can get the child’s exit status

• Exec
ØMake a process execute a different program
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Review: Zombie (or defunct) Processes

• Process has terminated
ØAll of process’s resources are cleaned up

Ø EXCEPT its PCB

ØDead, but not gone…

ØAll child processes go into this state, though, likely 
just briefly

• Parent process has not yet collected its status
ØParent hasn’t completed its call to wait
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pid = 127
Child process

pid = 128
Exit_status = 0
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Serial Execution

Benefits
• Simpler model
• Don’t need to worry about 

conflicts between 
applications
Ø (can’t accidentally touch 

each other’s memory)

• Individual programs will 
execute faster 

Limitations
• It’s not really feasible for us 

to only have one process 
run at a time

• CPU is idle when process 
needs I/O or is blocking for 
some other reason
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Goal: Multiprogramming

• Multiprogramming: have multiple programs 
available to the machine, even if you only have 
one CPU core that can execute them.

• Switch between programs when there is 
downtime
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Goal: Multiprogramming
• Multiprogramming: have multiple programs available to 

the machine, even if you only have one CPU that can 
execute them

• When I/O requested by process, CPU not needed!
Ø Allow another program to run

• Other reasons that the process yields the CPU

• Challenge: machine is NOT exclusive to one executing 
process
Ø What if one running program…

• Monopolizes CPU, memory?
• Reads/writes another’s memory?
• Uses I/O device being used by another?
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Foreshadowing …

CPU Scheduling 101

• The OS scheduler makes a sequence of “moves”

ØNext move: if a CPU core is idle, pick a ready thread 

from the ready pool and dispatch it (run it).

Ø Scheduler’s choice is “nondeterministic”

Ø Scheduler and machine determine the interleaving of 

execution (a schedule).

Wakeup GetNextToRun

ready pool
blocked

processes
If timer expires, or 
wait/yield/terminate
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CPU’s Flow
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Switching

• What causes a CPU to switch out of the current 
process?
ØProcess exits
Ø Timer interrupt: quantum expired
ØProcess needs a resource that isn’t available or I/O
ØProcess yields 
Ø…?

• Switching takes time and resources

run process
switch in switch out
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Based on what we know about 
dual mode, what does a “switch” 
likely look like?

Switching

• What causes a CPU to switch out of the current 
process?
Ø Process exits
Ø Timer interrupt: quantum expired
Ø Process needs a resource that isn’t available or I/O
Ø Process yields 
Ø …?

• Switching takes time and resources
Ø Need to copy state so can start up again at the same 

place

run process
switch in switch out

Oct 1, 2018 Sprenkle - CSCI330 12
Called a context switch—switching between process contexts



7

Context Switching: Performance

• Even though it’s fast, context switching is 

expensive:

1. time spent is 100% overhead

2. must invalidate other processes’ resources (caches, 

memory mappings)

3. kernel must execute – it must be accessible in 

memory

• Solution to #3:

Ø keep kernel mapped in every process

VAS

Øprotect it to be inaccessible

0x0

0xFFFFFFFF
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CPU’s Flow

ready 
queue

(runqueue)

scheduler
getNextToRun() nothing?

pause

got 
process

sleep
exit

idle

timer
quantum 
expired

run process
switch in switch out

Idle loop

put 
process

Oct 1, 2018 Sprenkle - CSCI330 14



8

CPU Scheduler Scenario

• One CPU

• Cards represent number of seconds for the 

process to run

Ø (This info is not usually known a priori)
• When the scheduler “picks up”, all processes are 

on the ready queue
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Exploring Scheduling Algorithms
• Requirements: Execute processes to completion
• What are some possible algorithms to schedule 

the processes?
Ø Should be relatively simple – we need the scheduler 

to be fast
Ø Should come up with at least 3 algorithms
ØWhat are the outcomes from the algorithms?

• Discuss their tradeoffs
ØWhat would be a “better” schedule?  
ØHow do you measure “good”?
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A new option:
Non-Preemptive vs Preemptive
• Depending upon which scheduling opportunities 

are used by a scheduler, the scheduling can be: 
ØNon-Preemptive: The scheduler will allow the 

running process to continue to run as long as it 
remains ready (i.e., doesn’t block or exit).

ØPreemptive: The scheduler may set aside the 
running process in favor or another at any scheduling 
opportunity
• Enables time-sharing, priority scheduling
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Exploring Scheduling Algorithms
• Algorithm: Time slice: .5 seconds

ØAfter .5 seconds, boot the currently executing 
process

ØAssume .1 seconds of switching cost/overhead
• Discuss:

ØWhat is a valid schedule?  
ØWhat would be a “better” schedule?  
ØHow do you measure “better”?
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Changing it up: Priority
• Cards now have a priority
• In Unix, “niceness”

Ø Highest priority: −20 
Ø Lowest priority: 19
Ø Default: 0

• Processes inherit niceness from parent
• Cards:

Ø Clubs (lowest): 19
Ø Diamonds: 0
Ø Hearts: -2
Ø Spades: -20
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Impact of Priority
• Algorithm: Time slice: .5 seconds

ØAfter .5 seconds, boot the currently executing 
process

ØAssume .1 seconds of switching cost/overhead
• Discuss:

ØHow do your metrics of “better” change?
ØHow do your algorithms change?
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Other considerations
• How would your recommendations change if the 

time slice was 10 seconds?  1 minute?

• What other information would be helpful to 
make decisions?
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Impact of System
• Consider how your algorithms would change if 

your system is
Ø Super computer
ØNuclear power plant or medical device
Ø Your personal computer

• Discuss:
ØHow do your metrics of “better” change?
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Looking Ahead
• Project 1 due tomorrow
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