
1

Today
• Process Scheduling

Oct 3, 2018 Sprenkle - CSCI330 1

https://pollev.com/sprenkle

Review
• What is the CPU’s flow?
• When is a “new” process scheduled to run?

Ø What are the mechanics of scheduling a process?

• When determining process scheduling policy, what
are some considerations we should keep in mind?
Ø Process properties?
Ø Metrics?
Ø Preemptive vs Non-preemptive?
Ø ??

• What are the impacts of these considerations?

Oct 3, 2018 Sprenkle - CSCI330 2

2

Review: CPU’s Flow

ready
queue

(runqueue)

scheduler
getNextToRun() nothing

ready?

pause

got
process

sleep
exit

idle

timer
quantum
expired

run process
switch in switch out

Idle loop

put
process

Oct 3, 2018 Sprenkle - CSCI330 3

Review: CPU Scheduling Policy

• In designing the CPU scheduler there are two
major policy questions that must be answered:
ØUnder what circumstances will the scheduler be

invoked?
• Non-preemptive vs. Preemptive scheduling

ØWhen the scheduler is invoked, what criterion will it
use to select from the ready queue the next process
to run?
• Scheduling Algorithm

Oct 3, 2018 Sprenkle - CSCI330 4

3

Review: Scheduling Opportunities
There are four opportunities for the CPU scheduler
to select a new process to run:
1. The running process blocks (running → waiting)
2. A new process is created (new → ready)
3. The running process is interrupted (running

→ready)
ØOr yields
ØA process may also unblock. (waiting →ready)

4. A process exits. (running→terminated)

Oct 3, 2018 Sprenkle - CSCI330 5

Scheduling Metrics/Policy Goals
• CPU Utilization

Ø percentage of time CPU is being used (not idle)
• Response (or turnaround) time or latency, responsiveness

Ø How long does it take to complete a task or request? (R)
• Typically concerned with average

Ø Say a task takes D time units of work (its service demand)
• But how long does it spend waiting for service?

• Throughput
Ø How many tasks/requests complete per unit of time? (X)

• Fairness
Ø how well is the CPU distributed among processes

• Meet deadlines, reduce jitter for periodic tasks
Ø e.g., videos and other continuous media

Oct 3, 2018 Sprenkle - CSCI330 6

4

Sprenkle - CSCI330 7Oct 3, 2018

Why is multiprogramming beneficial

if we can still only execute

one instruction stream at a time?

• Usability – It’s a pain to have only one program.
• Efficiency – Switching between running programs

improves the performance of each program.

• Efficiency – Switching between running programs
improves the performance of the overall system.

• Cost – Need to buy less hardware if one machine
can run everything.

• Some other reason(s).

Oct 3, 2018 Sprenkle - CSCI330 8

5

Metrics in Practice
Which metrics are most important in each scenario?
What might a reasonable scheduling policy look like for each?

1. Super computer: large, long running jobs submitted by many
users

2. Medical device: sensors for monitoring patient and actuators
for doing something to them (e.g., administering medication)

3. General-purpose desktop/laptop: variety of tasks happening
for one user (browser, email, music, messaging, etc.)

Metrics: CPU utilization, response time, throughput, fairness,
others?

Oct 3, 2018 Sprenkle - CSCI330 9

Observations
• Super computer probably has lots of CPU hungry

tasks, not much I/O.

• Task priority probably critical to medical device.

• Humans like interactivity on desktop/laptop,
even at the expense of overall runtime.

Oct 3, 2018 Sprenkle - CSCI330 10

6

CPU Scheduling: There is no one-size-fits-all

“best” policy…

• Depends on the goals of the system.

• Often have multiple (conflicting) goals or primary

metrics

Oct 3, 2018 Sprenkle - CSCI330 12

Ideal Throughput

Ideal throughput

Request arrival rate (offered load)

Response
rate

(throughput)

i.e., request
completion

rate

saturation

peak rate

throughput == arrival rate
The center is not saturated:
it completes requests at the
rate requests are submitted.

throughput == peak rate
The center is saturated.
It can’t go any faster, no matter how
many requests are submitted.

This graph shows
throughput (e.g., of a
server) as a function of
offered load. It is
idealized: your mileage
may vary.

Oct 3, 2018 Sprenkle - CSCI330 13

7

Throughput: reality

Request arrival rate (offered load)

Response
rate

(throughput)

i.e., request
completion

rate

saturation

peak rate

Thrashing or congestion collapse
Real servers/devices often have some pathological behaviors at
saturation. They abort requests after investing work in them
(thrashing), which wastes work, reducing throughput.

delivered
throughput
(“goodput”)

Illustration only
Saturation behavior is
highly sensitive to
implementation
choices and quality.

Oct 3, 2018 Sprenkle - CSCI330 14

A simple policy: FCFS

• The most basic scheduling policy is first-come-first-
served (FCFS), also called first-in-first-out (FIFO).

• FCFS is like the checkout line at the Kwik-e-mart

• Maintain a queue ordered by time of arrival.

•GetNextToRun selects from the front (head) of
the queue.

getputforce-yield
quantum expire

or preempt

get
thread

to
dispatch

wakeup
put

tail head

runqueue

Oct 3, 2018 Sprenkle - CSCI330 15

8

Evaluating FCFS
• Throughput. FCFS is as good as any non-preemptive

policy.
• Fairness. FCFS is intuitively fair…sort of.

Ø “The early bird gets the worm”…and everyone is
fed…eventually.

• Response time. Long jobs keep everyone else
waiting.
Ø Consider service demand (D) for a process/job/thread.

3 5 6
D=3 D=2 D=1

Time

R = (3 + 5 + 6)/3 = 4.67

D=3D=2D=1

CPUtail
runQueue

Oct 3, 2018 Sprenkle - CSCI330 16

Non-Preemptive vs Preemptive
• Depending upon which scheduling opportunities

are used by a scheduler, the scheduling can be:
ØNon-Preemptive: The scheduler will allow the

running process to continue to run as long as it
remains ready (i.e., doesn’t block or exit).

ØPreemptive: The scheduler may set aside the
running process in favor of another at any scheduling
opportunity
• Enables time-sharing, priority scheduling

Oct 3, 2018 Sprenkle - CSCI330 17

9

Preemptive FCFS: Round Robin
• Preemptive timeslicing is one way to improve fairness of FCFS
• If job does not block or exit, force an involuntary context

switch after each quantum Q of CPU time
• FCFS without preemptive timeslicing is “run to completion”

(RTC)
• FCFS with preemptive timeslicing is called round robin

D=3 D=2 D=1

3+ε 5 6

R = (3 + 5 + 6 + ε)/3 = 4.67 + ε
Q=1

Context switch
time = ε

FCFS-RTC

round robin

Oct 3, 2018 Sprenkle - CSCI330 18

Overhead and Goodput
• Context switching is overhead: wasted effort

Ø It is a cost that the system imposes to get the work
done. It is not actually doing the work.

Quantum Q

Efficiency
or goodput

What percentage of the
time is the busy resource

doing useful work?

Q/(Q+ε)

Q ε

1 100%

Oct 3, 2018 Sprenkle - CSCI330 19

10

Time

Tasks

(1)

(2)

(3)

(4)

(5)

Round Robin (1 ms time slice)

FIFO and SJF

(1)

(2)

(3)

(4)

(5)

Round Robin vs. FIFO

Oct 3, 2018 Sprenkle - CSCI330 20

Preemptive

Non-
Preemptive

Round Robin: Slice Length

Time

Tasks

(1)

(2)

(3)

(4)

(5)

Round Robin (1 ms time slice)

Round Robin (100 ms time slice)

(1)

(2)

(3)

(4)

(5)

rest of task 1

rest of task 1

Oct 3, 2018 Sprenkle - CSCI330 21

11

Preemptive FCFS: Round Robin
• Preemptive timeslicing is one way to improve fairness of FCFS
• If job does not block or exit, force an involuntary context

switch after each quantum Q of CPU time
• FCFS without preemptive timeslicing is “run to completion”

(RTC)
• FCFS with preemptive timeslicing is called round robin

D=3 D=2 D=1

3+ε 5 6

R = (3 + 5 + 6 + ε)/3 = 4.67 + ε
Q=1

Context switch
time = ε

FCFS-RTC

round robin

Oct 3, 2018 Sprenkle - CSCI330 22

In this case, R is unchanged by timeslicing.
Is this always true?
How else can you analyze RR?

Evaluating Round Robin

• Response time. RR reduces response time for short jobs.
Ø For a given load, wait time is proportional to the job’s total

service demand D.
• Fairness. RR reduces variance in wait times.

Ø But: RR makes jobs wait for jobs that arrived later.
• Throughput. RR imposes extra context switch overhead.

Ø Degrades to FCFS-RTC with large Q.

D=5 D=1 R = (5+6)/2 = 5.5

R = (2+6 + ε)/2 = 4 + ε

Oct 3, 2018 Sprenkle - CSCI330 23

12

Minimizing Response Time: SJF (STCF)

• Shortest Job First (SJF) is provably optimal if the
goal is to minimize average-case R.
Ø Also called Shortest Time to Completion First (STCF) or

Shortest Remaining Processing Time (SRPT)

• Idea: get short jobs out of the way quickly to
minimize the number of jobs waiting while a long
job runs.
Ø Intuition: longest jobs do the least possible damage to

the wait times of their competitors.

1 3 6
D=3D=2D=1

R = (1 + 3 + 6)/3 = 3.33
Oct 3, 2018 Sprenkle - CSCI330 24

FIFO vs. SJF

Time

Tasks

(1)

(2)

(3)

(4)

(5)

FIFO

SJF

(1)

(2)

(3)

(4)

(5)

Oct 3, 2018 Sprenkle - CSCI330 25

13

Minimizing Response Time: SJF (STCF)

• Shortest Job First (SJF) is provably optimal if the
goal is to minimize average-case R.
Ø Also called Shortest Time to Completion First (STCF) or

Shortest Remaining Processing Time (SRPT)

• Idea: get short jobs out of the way quickly to
minimize the number of jobs waiting while a long
job runs.
Ø Intuition: longest jobs do the least possible damage to

the wait times of their competitors.

1 3 6
D=3D=2D=1

R = (1 + 3 + 6)/3 = 3.33
Oct 3, 2018 Sprenkle - CSCI330 26

Any limitations?

Could starve long-running processes

The Process Mix
• Two broad classes of processes:

ØCPU Bound: A process that is spending most of its
time doing CPU operations.

Ø I/O Bound: A process that is spending most of its
time doing I/O operations.

• Processes can switch between being CPU Bound
and being I/O Bound during their execution

Oct 3, 2018 Sprenkle - CSCI330 27

14

Anatomy of a read

seek transfer (DMA)

1. Compute
(user mode)

2. Enter kernel
for read syscall.

3. Check to see if requested data (e.g.,
a block) is in memory. If not, figure

where it is on disk, and start the I/O.

4. sleep for I/O (stall)
Wakeup by interrupt.

5. Copy data from
kernel buffer to user

buffer in read.
(kernel mode)

CPU

Disk

6. Return to
user mode.

Time

Oct 3, 2018 Sprenkle - CSCI330 28

Mixed Workload

Time

Tasks

I/O bound

CPU bound

CPU bound

issues
 I/O
request

 I/O
completes

gets
CPU

 I/O
completes

Oct 3, 2018 Sprenkle - CSCI330 29

15

Two Schedules for CPU/Disk

CPU busy 25/25: U = 100%
Disk busy 15/25: U = 60%

5 5 1 1

4

CPU busy 25/37: U = 67%
Disk busy 15/37: U = 40%

33% improvement in utilization
When there is work to do,
U == efficiency.
More U means better throughput.

1. Naive Round Robin

2. Add internal priority boost for I/O completion

Oct 3, 2018 Sprenkle - CSCI330 30

CPU

CPU

Disk

Disk

Looking Ahead
• Interprocess Communication
• Project 2 released

Ø System calls
ØMuch more C programming, actually using pointers
ØDue in two Mondays

Oct 3, 2018 Sprenkle - CSCI330 31

