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Today
• Process Scheduling

ØReview and conclusions
• Cooperating Processes

Ø Interprocess Communication

Oct 5, 2018 Sprenkle - CSCI330 1

https://pollev.com/sprenkle

Review
• What are the goals for scheduling policy?

ØHow do we measure the goodness of scheduling 
policies?

• What are examples of scheduling policies?
ØWhat are their characteristics?
ØWhat are their tradeoffs?

• What is the best scheduling policy?
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Review: Scheduling Metrics/Policy Goals

• CPU Utilization

Ø percentage of time CPU is being used (not idle)

• Response (or turnaround) time or latency, responsiveness

Ø How long does it take to complete a task or request? (R)

• Typically concerned with average

Ø Say a task takes D time units of work (its service demand)

• But how long does it spend waiting for service?

• Throughput

Ø How many tasks/requests complete per unit of time? (X)

• Fairness

Ø how well is the CPU distributed among processes

• Meet deadlines, reduce jitter for periodic tasks

Ø e.g., videos and other continuous media
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CPU Scheduling: There is no one-size-fits-all 

“best” policy…

• Depends on the goals of the system.

• Often have multiple (conflicting) goals or primary 

metrics

Oct 5, 2018 Sprenkle - CSCI330 4



3

Review: FCFS
• Throughput. FCFS is as good as any non-preemptive 

policy.
• Fairness.  FCFS is intuitively fair…sort of.

Ø “The early bird gets the worm”…and everyone is 
fed…eventually.

• Response time.  Long jobs keep everyone else 
waiting.
Ø Consider service demand (D) for a process/job/thread.

3 5 6
D=3 D=2 D=1

Time

R = (3 + 5 + 6)/3 = 4.67

D=3D=2D=1

CPUtail
runQueue
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Review: Non-Preemptive vs Preemptive
• Depending upon which scheduling opportunities 

are used by a scheduler, the scheduling can be: 
ØNon-Preemptive: The scheduler will allow the 

running process to continue to run as long as it 
remains ready (i.e., doesn’t block or exit).

ØPreemptive: The scheduler may set aside the 
running process in favor of another at any scheduling 
opportunity
• Enables time-sharing, priority scheduling
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Review: Round Robin

• Response time.  RR reduces response time for short jobs.
Ø For a given load, wait time is proportional to the job’s total 

service demand D.
• Fairness.  RR reduces variance in wait times.

Ø But: RR makes jobs wait for jobs that arrived later.
• Throughput.  RR imposes extra context switch overhead.

Ø Degrades to FCFS-RTC with large Q.

D=5 D=1 R = (5+6)/2 = 5.5

R = (2+6 + ε)/2 = 4 + ε
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Review: Minimizing Response Time: SJF 
(STCF)
• Shortest Job First (SJF) is provably optimal if the 

goal is to minimize average-case R. 
Ø Also called Shortest Time to Completion First (STCF) or 

Shortest Remaining Processing Time (SRPT)

• Idea: get short jobs out of the way quickly to 
minimize the number of jobs waiting while a long 
job runs.
Ø Intuition: longest jobs do the least possible damage to 

the wait times of their competitors.

1 3 6
D=3D=2D=1

R = (1 + 3 + 6)/3 = 3.33
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Any limitations?

Could starve long-running processes
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Priority
• Most modern OS schedulers use priority

scheduling
Ø Each task/process has a priority value (integer)
Ø The scheduler favors higher-priority process
ØUser-settable relative importance within 

application
Ø Internal priority adjustments as an 

implementation technique within the scheduler. 
ØHow to set the priority of a process?

• How many priority levels?
Ø 32 (Windows) to 128 (OS X)
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Ordering Runqueues by Priority

In a typical OS, each thread has a priority.  
When a core is idle, pick a thread with highest priority.  
If a higher-priority thread becomes ready, then preempt the thread 
currently running on the core and switch to the new thread.  

ready 
queue

(runqueue)
In real systems, the simple 
“cartoon ready queue” may be 
a multi-level queue: 
an ordered array of queues, 
one for each priority level.
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Multi-level queue

high

low

Array of queues
indexed by priority

GetNextToRun selects job
at the head of the highest
priority queue that is not empty.  
Most machines have an 
instruction to find the highest 
non-empty queue quickly.

constant time, no sorting

Ready pool

P=1: high priority

P=N: low priority

Multi-level priority queue structures are commonly used in 
OSs to represent the run queue == ready pool == ready list.
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The Process Mix
• Two broad classes of processes:

ØCPU Bound: A process that is spending most of its 
time doing CPU operations.

Ø I/O Bound: A process that is spending most of its 
time doing I/O operations.

• Processes can switch between being CPU Bound 
and being I/O Bound during their execution
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Anatomy of a read

seek transfer (DMA)

1. Compute
(user mode)

2. Enter kernel 
for read syscall.

3. Check to see if requested data (e.g., 
a block) is in memory.  If not, figure 

where it is on disk, and start the I/O.

4. sleep for I/O (stall)
Wakeup by interrupt.

5. Copy data from 
kernel buffer to user 

buffer in read.
(kernel mode)

CPU

Disk

6. Return to 
user mode.

Time
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Mixed Workload

Time

Tasks

I/O bound

CPU bound

CPU bound

issues 
  I/O 
request

     I/O
completes

gets 
CPU

     I/O
completes
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Two Schedules for CPU/Disk

CPU busy 25/25: U = 100%
Disk busy 15/25: U = 60%

5 5 1 1

4

CPU busy 25/37: U = 67%
Disk busy 15/37: U = 40%

33% improvement in utilization
When there is work to do,
U == efficiency.  
More U means better throughput.

1. Naive Round Robin

2. Add internal priority boost for I/O completion
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CPU

CPU

Disk

Disk

Based on this example, what would 
make a better scheduling algorithm?

More Realistic General-Purpose Policy
• Special class gets special treatment

Ø varies – requires configuration
• Everything else: roughly equal time quantum

Ø “Round robin”
ØGive priority boost to processes that frequently 

perform I/O
ØWhy?

• “I/O bound” processes frequently block.
Ø If we want them to get equal CPU time, we need to 

give them the CPU more often.
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Estimating Time-to-Yield

• How to predict which job/task/thread will have the 

shortest demand on the CPU?

Ø If you don’t know, then guess

• Weather report strategy: predict future D from the recent 

past

• We can guess well by using adaptive internal priority

Ø Common technique: multi-level feedback queue

Ø Set N priority levels, with a timeslice quantum for each

Ø If thread’s quantum expires, drop its priority down one 

level

• “It must be CPU bound.”  (mostly exercising the CPU)

Ø If a job yields or blocks, bump priority up one level

• “It must be I/O bound.”     (blocking to wait for I/O)
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Multilevel Feedback Queue: MFQ
• Used by many systems (e.g., Unix variants) implement 

internal priority
• Multilevel. Separate queue for each of N priority levels.

Ø Use RR on each queue
Ø Look at queue i+1 only if queue i is empty
Ø Run selected process for 2i quanta (for queue i)

• Feedback. Factor previous behavior into new job priority.

high

low

I/O bound jobs

CPU-bound jobs

jobs holding resources
jobs with high external priority

ready queues
indexed by priority

GetNextToRun selects job
at the head of the highest
priority queue: constant time, 
no sorting Priority of CPU-bound jobs 

decays with system load and 
service received. 
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Multilevel Feedback Queue: MFQ

Priority

1

Time Slice (ms)

time slice
expiration

new or I/O 
bound task

2

4

3

80

40

20

10

Round Robin Queues

Oct 5, 2018 Sprenkle - CSCI330 20

Effect of this model on our metrics?

MFQ Tradeoffs

Benefits
• High CPU utilization
• Fewer context switches

Ø If you need more CPU, you 
get more CPU (overtime)

• Auto-adjust priorities

Limitations
• Time to look through the 

queues for a  process to run
• “fairness”?
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Linux’s “Completely Fair Scheduler”
(default since Oct 2007)
• “real time” process classes – always run first (rare)
• Other processes:

Ø Red-black BST of processes, 
organized by CPU time 
they’ve received

Ø Pick the ready process that has
run for the shortest 
(normalized) time thus far

Ø Run it, update its CPU usage time, add to tree
• Interactive processes: Usually blocked, low total run 

time, high priority.
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Image source: 
https://www.ibm.com/developerworks/libr
ary/l-completely-fair-scheduler/

Windows
“Each thread has a dynamic priority. This is the priority 
the scheduler uses to determine which thread to 
execute. Initially, a thread's dynamic priority is the 
same as its base priority. The system can boost and 
lower the dynamic priority, to ensure that it is 
responsive and that no threads are starved for 
processor time.”

• Priority is boosted when:
Ø Process’s window is brought to foreground.
Ø Process’s window receives input.
Ø Process was waiting for I/O, which has now completed. 
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Source: https://docs.microsoft.com/en-us/windows/desktop/ProcThread/priority-boosts

https://www.ibm.com/developerworks/library/l-completely-fair-scheduler/


12

Scheduling Policy
• Large variation between OSes and their goals

ØNeed to know your system, its workload, and its 
goals

• Lots of different scheduling policies
ØDesigned with the goals in mind
Ø Still an active area of development

• NEVER make assumptions about what the 
scheduler will do!
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PROCESS COOPERATION
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Concurrency
• Single CPU: logical concurrency

• Multiple CPU cores (commonly 4-16)
Ø Still WAY more processes than CPUs

• With multiple cores (more hardware), 
performance is clearly important.  

• There are other benefits too though!
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Process Cooperation
• Independent process cannot affect or be 

affected by the execution of another process
• Cooperating process can affect or be affected by 

the execution of another process
• Advantages of process cooperation

Ø Information sharing 
ØComputation speed-up
ØModularity
ØConvenience
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Non-Performance Benefits

• Modularity: divide a task among specialized 
processes
Ødevelop / debug / test independently

Ø reusable processes for other tasks

• Fault tolerance: if one process fails, user can 
interact with another
Ø typically more distributed systems than OS

• I/O and blocking: if one process performs I/O 
and blocks, other(s) can keep executing.

Oct 5, 2018 Sprenkle - CSCI330 28

Common Model: Producer-Consumer
• Producer process produces information that is 

consumed by a Consumer process

• Enabling model:
ØCommon design patterns for coordinating processes 

(or threads)
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Interprocess Communication: Pipeline

Example:  $ ls | sort | grep py

P1 P2 P
N

…

Unix philosophy: Do one thing, and do it well.  (Modularity)
Result: lots of small utilities chained together at the command line.
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Interprocess Communication: 

Shared Memory

• An area of memory shared among the processes 

that wish to communicate

• The communication is under the control of the 

user processes not the operating system.

• Major issue is to provide mechanism that will 

allow the user processes to synchronize their 

actions when they access shared memory. 
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Interprocess Communication: 
Shared Memory

Example: media player
ØProducer: read file from disk into buffer
ØConsumer: decode file and send to output device

Producer Consumer3 5 4 92
in

outshared data buffer

Each side can perform I/O and block independently of the other.
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One implementation: Circular buffer
out: first full position in the buffer
in: next free position in the buffer

IPC via Shared Memory
• Process B uses system calls 

to create and attach to a 
shared memory segment.

• Process A uses a system call 
to map (attach) B’s shared 
memory segment to its 
own address space.

• Shared memory is then 
accessed like any other 
portion of the process’ 
address space.
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process A

message queue

kernel

(a) (b)

process A

shared memory

kernel

process B

m0 m1 m2 ...m3 mn

process B



17

Implicit Shared Memory: fork()
• When new process is 

created, it shares a (read 
only) copy of its parent’s 
memory.

• Copy-on-write (COW) –
only make a private copy of 
memory when process 
attempts to write.  (Why?)

• Only works on shared 
hardware.

• Used frequently (every 
process creation!), e.g., 
shell commands.

Text
Data

Stack

Child
OS

Heap

Text
Data

Stack

Parent
OS

Heap

fork()

Usually isn’t used for long-term 
communication, but it does cause shared 
memory.
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Looking Ahead
• Project 2: System Calls
• Threads!
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