
1

Today
• Process Scheduling

ØReview and conclusions
• Cooperating Processes

Ø Interprocess Communication

Oct 5, 2018 Sprenkle - CSCI330 1

https://pollev.com/sprenkle

Review
• What are the goals for scheduling policy?

ØHow do we measure the goodness of scheduling
policies?

• What are examples of scheduling policies?
ØWhat are their characteristics?
ØWhat are their tradeoffs?

• What is the best scheduling policy?

Oct 5, 2018 Sprenkle - CSCI330 2

2

Review: Scheduling Metrics/Policy Goals

• CPU Utilization

Ø percentage of time CPU is being used (not idle)

• Response (or turnaround) time or latency, responsiveness

Ø How long does it take to complete a task or request? (R)

• Typically concerned with average

Ø Say a task takes D time units of work (its service demand)

• But how long does it spend waiting for service?

• Throughput

Ø How many tasks/requests complete per unit of time? (X)

• Fairness

Ø how well is the CPU distributed among processes

• Meet deadlines, reduce jitter for periodic tasks

Ø e.g., videos and other continuous media

Oct 5, 2018 Sprenkle - CSCI330 3

CPU Scheduling: There is no one-size-fits-all

“best” policy…

• Depends on the goals of the system.

• Often have multiple (conflicting) goals or primary

metrics

Oct 5, 2018 Sprenkle - CSCI330 4

3

Review: FCFS
• Throughput. FCFS is as good as any non-preemptive

policy.
• Fairness. FCFS is intuitively fair…sort of.

Ø “The early bird gets the worm”…and everyone is
fed…eventually.

• Response time. Long jobs keep everyone else
waiting.
Ø Consider service demand (D) for a process/job/thread.

3 5 6
D=3 D=2 D=1

Time

R = (3 + 5 + 6)/3 = 4.67

D=3D=2D=1

CPUtail
runQueue

Oct 5, 2018 Sprenkle - CSCI330 5

Review: Non-Preemptive vs Preemptive
• Depending upon which scheduling opportunities

are used by a scheduler, the scheduling can be:
ØNon-Preemptive: The scheduler will allow the

running process to continue to run as long as it
remains ready (i.e., doesn’t block or exit).

ØPreemptive: The scheduler may set aside the
running process in favor of another at any scheduling
opportunity
• Enables time-sharing, priority scheduling

Oct 5, 2018 Sprenkle - CSCI330 6

4

Review: Round Robin

• Response time. RR reduces response time for short jobs.
Ø For a given load, wait time is proportional to the job’s total

service demand D.
• Fairness. RR reduces variance in wait times.

Ø But: RR makes jobs wait for jobs that arrived later.
• Throughput. RR imposes extra context switch overhead.

Ø Degrades to FCFS-RTC with large Q.

D=5 D=1 R = (5+6)/2 = 5.5

R = (2+6 + ε)/2 = 4 + ε

Oct 5, 2018 Sprenkle - CSCI330 7

Review: Minimizing Response Time: SJF
(STCF)
• Shortest Job First (SJF) is provably optimal if the

goal is to minimize average-case R.
Ø Also called Shortest Time to Completion First (STCF) or

Shortest Remaining Processing Time (SRPT)

• Idea: get short jobs out of the way quickly to
minimize the number of jobs waiting while a long
job runs.
Ø Intuition: longest jobs do the least possible damage to

the wait times of their competitors.

1 3 6
D=3D=2D=1

R = (1 + 3 + 6)/3 = 3.33
Oct 5, 2018 Sprenkle - CSCI330 8

Any limitations?

Could starve long-running processes

5

Priority
• Most modern OS schedulers use priority

scheduling
Ø Each task/process has a priority value (integer)
Ø The scheduler favors higher-priority process
ØUser-settable relative importance within

application
Ø Internal priority adjustments as an

implementation technique within the scheduler.
ØHow to set the priority of a process?

• How many priority levels?
Ø 32 (Windows) to 128 (OS X)

Oct 5, 2018 Sprenkle - CSCI330 9

Ordering Runqueues by Priority

In a typical OS, each thread has a priority.
When a core is idle, pick a thread with highest priority.
If a higher-priority thread becomes ready, then preempt the thread
currently running on the core and switch to the new thread.

ready
queue

(runqueue)
In real systems, the simple
“cartoon ready queue” may be
a multi-level queue:
an ordered array of queues,
one for each priority level.

Oct 5, 2018 Sprenkle - CSCI330 10

6

Multi-level queue

high

low

Array of queues
indexed by priority

GetNextToRun selects job
at the head of the highest
priority queue that is not empty.
Most machines have an
instruction to find the highest
non-empty queue quickly.

constant time, no sorting

Ready pool

P=1: high priority

P=N: low priority

Multi-level priority queue structures are commonly used in
OSs to represent the run queue == ready pool == ready list.

Oct 5, 2018 Sprenkle - CSCI330 11

The Process Mix
• Two broad classes of processes:

ØCPU Bound: A process that is spending most of its
time doing CPU operations.

Ø I/O Bound: A process that is spending most of its
time doing I/O operations.

• Processes can switch between being CPU Bound
and being I/O Bound during their execution

Oct 5, 2018 Sprenkle - CSCI330 12

7

Anatomy of a read

seek transfer (DMA)

1. Compute
(user mode)

2. Enter kernel
for read syscall.

3. Check to see if requested data (e.g.,
a block) is in memory. If not, figure

where it is on disk, and start the I/O.

4. sleep for I/O (stall)
Wakeup by interrupt.

5. Copy data from
kernel buffer to user

buffer in read.
(kernel mode)

CPU

Disk

6. Return to
user mode.

Time

Oct 5, 2018 Sprenkle - CSCI330 13

Mixed Workload

Time

Tasks

I/O bound

CPU bound

CPU bound

issues
 I/O
request

 I/O
completes

gets
CPU

 I/O
completes

Oct 5, 2018 Sprenkle - CSCI330 14

8

Two Schedules for CPU/Disk

CPU busy 25/25: U = 100%
Disk busy 15/25: U = 60%

5 5 1 1

4

CPU busy 25/37: U = 67%
Disk busy 15/37: U = 40%

33% improvement in utilization
When there is work to do,
U == efficiency.
More U means better throughput.

1. Naive Round Robin

2. Add internal priority boost for I/O completion

Oct 5, 2018 Sprenkle - CSCI330 15

CPU

CPU

Disk

Disk

Based on this example, what would
make a better scheduling algorithm?

More Realistic General-Purpose Policy
• Special class gets special treatment

Ø varies – requires configuration
• Everything else: roughly equal time quantum

Ø “Round robin”
ØGive priority boost to processes that frequently

perform I/O
ØWhy?

• “I/O bound” processes frequently block.
Ø If we want them to get equal CPU time, we need to

give them the CPU more often.
Oct 5, 2018 Sprenkle - CSCI330 16

9

Estimating Time-to-Yield

• How to predict which job/task/thread will have the

shortest demand on the CPU?

Ø If you don’t know, then guess

• Weather report strategy: predict future D from the recent

past

• We can guess well by using adaptive internal priority

Ø Common technique: multi-level feedback queue

Ø Set N priority levels, with a timeslice quantum for each

Ø If thread’s quantum expires, drop its priority down one

level

• “It must be CPU bound.” (mostly exercising the CPU)

Ø If a job yields or blocks, bump priority up one level

• “It must be I/O bound.” (blocking to wait for I/O)

Oct 5, 2018 Sprenkle - CSCI330 17

Multilevel Feedback Queue: MFQ
• Used by many systems (e.g., Unix variants) implement

internal priority
• Multilevel. Separate queue for each of N priority levels.

Ø Use RR on each queue
Ø Look at queue i+1 only if queue i is empty
Ø Run selected process for 2i quanta (for queue i)

• Feedback. Factor previous behavior into new job priority.

high

low

I/O bound jobs

CPU-bound jobs

jobs holding resources
jobs with high external priority

ready queues
indexed by priority

GetNextToRun selects job
at the head of the highest
priority queue: constant time,
no sorting Priority of CPU-bound jobs

decays with system load and
service received.

Oct 5, 2018 Sprenkle - CSCI330 19

10

Multilevel Feedback Queue: MFQ

Priority

1

Time Slice (ms)

time slice
expiration

new or I/O
bound task

2

4

3

80

40

20

10

Round Robin Queues

Oct 5, 2018 Sprenkle - CSCI330 20

Effect of this model on our metrics?

MFQ Tradeoffs

Benefits
• High CPU utilization
• Fewer context switches

Ø If you need more CPU, you
get more CPU (overtime)

• Auto-adjust priorities

Limitations
• Time to look through the

queues for a process to run
• “fairness”?

Oct 5, 2018 Sprenkle - CSCI330 21

11

Linux’s “Completely Fair Scheduler”
(default since Oct 2007)
• “real time” process classes – always run first (rare)
• Other processes:

Ø Red-black BST of processes,
organized by CPU time
they’ve received

Ø Pick the ready process that has
run for the shortest
(normalized) time thus far

Ø Run it, update its CPU usage time, add to tree
• Interactive processes: Usually blocked, low total run

time, high priority.
Oct 5, 2018 Sprenkle - CSCI330 22

Image source:
https://www.ibm.com/developerworks/libr
ary/l-completely-fair-scheduler/

Windows
“Each thread has a dynamic priority. This is the priority
the scheduler uses to determine which thread to
execute. Initially, a thread's dynamic priority is the
same as its base priority. The system can boost and
lower the dynamic priority, to ensure that it is
responsive and that no threads are starved for
processor time.”

• Priority is boosted when:
Ø Process’s window is brought to foreground.
Ø Process’s window receives input.
Ø Process was waiting for I/O, which has now completed.

Oct 5, 2018 Sprenkle - CSCI330 23

Source: https://docs.microsoft.com/en-us/windows/desktop/ProcThread/priority-boosts

https://www.ibm.com/developerworks/library/l-completely-fair-scheduler/

12

Scheduling Policy
• Large variation between OSes and their goals

ØNeed to know your system, its workload, and its
goals

• Lots of different scheduling policies
ØDesigned with the goals in mind
Ø Still an active area of development

• NEVER make assumptions about what the
scheduler will do!

Oct 5, 2018 Sprenkle - CSCI330 24

PROCESS COOPERATION

Oct 5, 2018 Sprenkle - CSCI330 25

13

Concurrency
• Single CPU: logical concurrency

• Multiple CPU cores (commonly 4-16)
Ø Still WAY more processes than CPUs

• With multiple cores (more hardware),
performance is clearly important.

• There are other benefits too though!

Oct 5, 2018 Sprenkle - CSCI330 26

Process Cooperation
• Independent process cannot affect or be

affected by the execution of another process
• Cooperating process can affect or be affected by

the execution of another process
• Advantages of process cooperation

Ø Information sharing
ØComputation speed-up
ØModularity
ØConvenience

Oct 5, 2018 Sprenkle - CSCI330 27

14

Non-Performance Benefits

• Modularity: divide a task among specialized
processes
Ødevelop / debug / test independently

Ø reusable processes for other tasks

• Fault tolerance: if one process fails, user can
interact with another
Ø typically more distributed systems than OS

• I/O and blocking: if one process performs I/O
and blocks, other(s) can keep executing.

Oct 5, 2018 Sprenkle - CSCI330 28

Common Model: Producer-Consumer
• Producer process produces information that is

consumed by a Consumer process

• Enabling model:
ØCommon design patterns for coordinating processes

(or threads)

Oct 5, 2018 Sprenkle - CSCI330 29

15

Interprocess Communication: Pipeline

Example: $ ls | sort | grep py

P1 P2 P
N

…

Unix philosophy: Do one thing, and do it well. (Modularity)
Result: lots of small utilities chained together at the command line.

Oct 5, 2018 Sprenkle - CSCI330 30

Interprocess Communication:

Shared Memory

• An area of memory shared among the processes

that wish to communicate

• The communication is under the control of the

user processes not the operating system.

• Major issue is to provide mechanism that will

allow the user processes to synchronize their

actions when they access shared memory.

Oct 5, 2018 Sprenkle - CSCI330 31

16

Interprocess Communication:
Shared Memory

Example: media player
ØProducer: read file from disk into buffer
ØConsumer: decode file and send to output device

Producer Consumer3 5 4 92
in

outshared data buffer

Each side can perform I/O and block independently of the other.

Oct 5, 2018 Sprenkle - CSCI330 32

One implementation: Circular buffer
out: first full position in the buffer
in: next free position in the buffer

IPC via Shared Memory
• Process B uses system calls

to create and attach to a
shared memory segment.

• Process A uses a system call
to map (attach) B’s shared
memory segment to its
own address space.

• Shared memory is then
accessed like any other
portion of the process’
address space.

Oct 5, 2018 Sprenkle - CSCI330 33

process A

message queue

kernel

(a) (b)

process A

shared memory

kernel

process B

m0 m1 m2 ...m3 mn

process B

17

Implicit Shared Memory: fork()
• When new process is

created, it shares a (read
only) copy of its parent’s
memory.

• Copy-on-write (COW) –
only make a private copy of
memory when process
attempts to write. (Why?)

• Only works on shared
hardware.

• Used frequently (every
process creation!), e.g.,
shell commands.

Text
Data

Stack

Child
OS

Heap

Text
Data

Stack

Parent
OS

Heap

fork()

Usually isn’t used for long-term
communication, but it does cause shared
memory.

Oct 5, 2018 Sprenkle - CSCI330 34

Looking Ahead
• Project 2: System Calls
• Threads!

Oct 5, 2018 Sprenkle - CSCI330 35

