
1

Today
• Threads

Ø vs Processes
ØUser vs Kernel threads

Oct 10, 2018 Sprenkle - CSCI330 1

Review
• What are some ways that processes 

communicate?
ØWhat are the tradeoffs between them?

Oct 10, 2018 Sprenkle - CSCI330 2



2

IPC Tradeoffs Summary
• Communication overhead

ØHigher with message passing, sockets
• Amount of cooperation/collaboration

ØHigher with shared memory, pipes
• Amount of protection

ØHigher with sockets à no direct access

Oct 10, 2018 Sprenkle - CSCI330 3

THREADS

Oct 10, 2018 Sprenkle - CSCI330 4



3

Parallel vs Concurrent Execution

Parallel Execution
• When two or more 

execution events are being 
carried out simultaneously.

• Examples:
Ø A Disk I/O and a CPU 

operation
Ø Several CPU operations on a 

multiprocessor system

Concurrent Execution
• When two or more 

execution events either 
appear to or actually do 
occur simultaneously.

• A superset of parallel 
execution

Oct 10, 2018 Sprenkle - CSCI330 5

Threads
• A thread is a stream (thread) of control….

Ø Executes a sequence of instructions.
Ø Thread identity is defined by CPU register 

context (PC, SP, …, page table base registers, 
…)

Ø Generally, “context” is the register values 
and referenced memory state

• Multiple threads can execute 
independently:
Ø They can run in parallel on multiple cores...

• physical concurrency
Ø …or arbitrarily interleaved on a single core

• logical concurrency

Oct 10, 2018 Sprenkle - CSCI330 6



4

Two threads sharing a CPU

Oct 10, 2018 Sprenkle - CSCI330 7

reality

concept

context 
switch

Threads vs Processes
• What experience do you have with using threads 

(if any)?
ØWhy did you use threads?
ØWhat purposes did they serve?

Oct 10, 2018 Sprenkle - CSCI330 8



5

Why use threads?
• Performance

Ø Exploiting multiple processors
Ø Exploiting multiple I/O devices
Ø Scaling

• Responsiveness
Ø Long-running tasks run in the background but UI can 

still respond 
• Program structure

Ø “This does something different from the main task”
Ø “This has some specific [modular] task”

Oct 10, 2018 Sprenkle - CSCI330 9

Threads vs Processes
• Threads executing within the same process share 
most of their address space.

• All threads in a process share the same:
ØCode segment
ØData segment
ØHeap

• Each thread must have its own:
ØProgram counter
ØRegister values
Ø Stack segment (i.e., local variables and parameters)

Oct 10, 2018 Sprenkle - CSCI330 10



6

Single and Multithreaded Processes

registers

code data files

stack registers registers registers

code data files

stackstackstack

thread thread

single-threaded process multithreaded process

Oct 10, 2018 Sprenkle - CSCI330 11

Thread Model: VAS
• Single process with multiple copies of 

execution resources
• ONE shared virtual address space!

Ø All process memory shared by every 
thread

Ø Threads coordinate by sharing 
variables (typically on heap)

• Recall: Process Control Block (PCB) 
contains process-specific information 
Ø Owner, PID, heap pointer, priority, 

active thread, and pointers to thread 
information

• Thread Control Block (TCB) contains 
thread-specific information
Ø Stack pointer, PC, thread state 

(running, …), register values, a pointer 
to PCB, …

Text
Data

T1 Stack

OS

Heap

T2 Stack

T3 Stack

Process VAS

Execution 
Context

PC
SP

Registers

TCB

PC
SP

Registers

PC
SP

Registers

Oct 10, 2018 Sprenkle - CSCI330 12



7

Thread Model: VAS
• Organization of Memory

Ø Stacks, heap

• How is this different than the 
single-threaded process?
Ø What were the benefits of 

that organization?
• What problems does this 

organization present?
Ø How problematic are those 

problems?

Text
Data

T1 Stack

OS

Heap

T2 Stack

T3 Stack

Process VAS

PC
SP

Registers

Execution 
Context

TCB

PC
SP

Registers

PC
SP

Registers

Oct 10, 2018 Sprenkle - CSCI330 13

Thread Abstraction
• Infinite number of processors
• Threads execute with variable speed

ØPrograms must be designed to work with any
schedule

Programmer Abstraction Physical Reality

Threads

Processors 1 2 3 4 5 1 2

Running
Threads

Ready 
Threads

Oct 10, 2018 Sprenkle - CSCI330 14



8

Thread States

Program

kernel
stack

user
stack

User TCB

kernel TCB

active 
ready or
running

blocked

wait

sleep
wait

wakeup
signal

When a thread is blocked,
its TCB is placed on a sleep queue

of threads waiting for a specific 
wakeup event. 

Looks familiar because applies to the 
process abstraction too, or, 

more precisely, to a 
process’s main thread.

Oct 10, 2018 Sprenkle - CSCI330 15

Comparing Threads and Processes

Threads
• Has no code or data segment or 

heap of its own
• Each has its own stack & registers
• Cannot live on its own

Ø must live within a process. 
Ø There can be more than one 

thread in a process
• If a thread dies, its stack is 

reclaimed
• Each (kernel) thread can run on a 

different physical processor
• Inexpensive creation and context 

switch

Processes
• Has code/data/heap & other 

segments of its own
Ø Also has its own registers

• There must be at least one thread 
in a process.

• If a process dies, its resources are 
reclaimed and all threads die

• Each process can run on a 
different physical processor

• Expensive creation and context 
switch

Oct 10, 2018 Sprenkle - CSCI330 16



9

Shared Memory vs Threads

• These models are equally powerful (for modern 

thread libraries)

Text

Data

Stack

Text

Data

Stack

OS OS

Heap
Heap

OS4 8

Oct 10, 2018 Sprenkle - CSCI330 17

Text

Data

T1 Stack

OS

Heap

T2 Stack

T3 Stack

PC

SP

Registers
PC

SP

Registers

PC

SP

Registers

Sprenkle - CSCI330 18Oct 10, 2018



10

If interprocess shared memory and threads 
serve the same roles, why do we prefer 
threads?
A. Threads are easier to use.

B. Threads provide higher performance.

C. Users have more control over thread execution 
/ synchronization.

D. Some other reason(s).
Oct 10, 2018 Sprenkle - CSCI330 19

Threads vs. Interprocess Shared Memory

• Threads: shared virtual address space à LOW 
context switch overhead

• Threads: implicit sharing, no extra calls necessary 
(opening FDs)

• Multiple processes: more protection
ØONLY explicitly shared memory is accessible to 

multiple processes

Ø Threads can, for example, overwrite each other’s 
stacks

Oct 10, 2018 Sprenkle - CSCI330 20

Why threads are 
called “lightweight”



11

Looking Ahead

• Project 2 due Monday

• Exam (Wed-Fri)
ØNo class Friday

Oct 10, 2018 Sprenkle - CSCI330 21


