
1

Today
• Threads

Ø Implementation models
Ø Java API

Oct 15, 2018 Sprenkle - CSCI330 1

Review
• What is a thread?

ØWhat does it contain?
ØHow is it related to a process?
ØHow is calling fork different from and similar to

using threads?
• What does threading allow?
• Why do we prefer threads over shared memory?

Oct 15, 2018 Sprenkle - CSCI330 2

2

Shared Memory vs Threads

• These models are equally powerful (for modern
thread libraries)

Text

Data

Stack

Text
Data

Stack

OS OS

Heap Heap

OS4 8

Oct 15, 2018 Sprenkle - CSCI330 3

Text

Data

T1 Stack

OS

Heap

T2 Stack

T3 Stack
PC
SP

Registers
PC
SP

Registers

PC
SP

Registers

Why do we prefer threads over shared memory?

Threads vs. Interprocess Shared Memory
• Threads: shared virtual address space à LOW

context switch overhead

• Threads: implicit sharing, no extra calls necessary
(opening FDs)

• Multiple processes: more protection
ØONLY explicitly shared memory is accessible to

multiple processes
Ø Threads can, for example, overwrite each other’s

stacks
Oct 15, 2018 Sprenkle - CSCI330 4

Why threads are
called “lightweight”

3

Multithreading vs Alternatives
• Anything that can be done with a multithreaded

program can also be done
ØWith a single-threaded program
ØWith cooperating processes and IPC

Oct 15, 2018 Sprenkle - CSCI330 5

How will the multithreaded version
compare to these alternatives?

Multithreading Efficiency
• Compared to a single-

threaded version of the
same program, a
multithreaded version
may exhibit
Ø better responsiveness
Ø improved performance

• Compared to an
implementation using
cooperating processes, a
multithreaded
implementation will be
Ø more economical in terms

of system resource usage
Ø more efficient in terms of

execution speed
• Creation
• Context Switching
• Communication

Oct 15, 2018 Sprenkle - CSCI330 6

4

Multicore Programming
• Types of parallelism

ØData parallelism – distributes subsets of the same
data across multiple cores, same operation on each

Ø Task parallelism – distributing threads across cores,
each thread performing unique operation

ØUsually implement hybrid of these

• As # of threads grows, so does architectural
support for threading

Oct 15, 2018 Sprenkle - CSCI330 7

THREAD TYPES

Oct 15, 2018 Sprenkle - CSCI330 8

5

Thread Abstraction vs. Implementation

• Abstraction: multiple execution contexts in a

shared VAS

• Implementation decisions:

ØHow much should the OS know about threads?

ØHow much should the user space process manage

about threads?

Oct 15, 2018 Sprenkle - CSCI330 9

User-Level Threads

• A user-level thread is a thread the OS does not know
about

• OS only schedules the process
Ø not the threads within a process

• Programmer uses a thread library to manage
threads (create, delete, synchronize, and schedule)
Ø User-level code can define scheduling policy
Ø Threads yield to other threads or voluntarily give up the

processor
• Switching threads does not involve kernel

moderating a context switch

user

kernel

Oct 15, 2018 Sprenkle - CSCI330 10

Process 0 Process 1

PP

TCB

6

User-Level Threads Life Cycle

Similar to processes and kernel-level threads:
Ø Thread is running
Ø Thread blocks, is interrupted by a signal or

voluntarily yields
Ø Switch to kernel
Ø Library code saves thread state to TCB
Ø Library code chooses new thread to run
Ø Library code loads its state from TCB
Ø Thread is running

Oct 15, 2018 Sprenkle - CSCI330 11

What happens if the thread blocks?

Kernel-Level Threads

• A kernel-level thread or kernel thread is a thread that the
OS knows about
Ø Every process has at least one kernel-level thread

• Kernel manages and schedules threads
Ø And each process has as at least one thread
Ø System calls used to create, destroy, and synchronize threads

• Switching between kernel-level threads of the same
process requires a small context switch
Ø Values of registers, program counter, and stack counter must

be switched
Ø Memory management information remains since threads

share an address space
Oct 15, 2018 Sprenkle - CSCI330 12

user

kernel

Process 0 Process 1

TCB

7

Kernel-Level Threads Life Cycle
Similar to processes:

Ø Thread is running
Ø Thread blocks, is interrupted, or voluntarily yields
ØMode switch to kernel mode
ØOS code saves thread state to TCB
ØOS code chooses new thread to run
ØOS code loads its state from TCB
ØMode switch to user mode
Ø Thread is running

Oct 15, 2018 Sprenkle - CSCI330 13

Kernel-Level vs User-Level Threads
Kernel-Level Threads User-level Threads

ü Even faster to create and switch
(no system calls or context
switches necessary)
• may be an order of magnitude faster

ü Customizable scheduler
− All user-level threads in a process

block on system calls
• can use non-blocking versions, if they

exist
− User-level scheduler can conflict

with kernel-level scheduler
− OS may run a process with only

idle threads!

Oct 15, 2018 Sprenkle - CSCI330 14

ü System calls do not block the
process

ü Switching between threads
within the same process is less
expensive
• registers, PC, and SP are changed,

memory management info does not
ü Only one scheduler
− Can be difficult to make efficient

kernel-level and user-level threads are UNRELATED
to kernel-mode and user-mode execution.

8

Implementation Option 1 (N:1)
• OS knows nothing about threads.
• All execution context stored in process memory.
• Threading implemented as a userspace library.

Userspace code decides which thread to execute
at any given time.

Process OS
Thread Library

PC
SP

Registers

Oct 15, 2018 Sprenkle - CSCI330 15

• OS fully aware of threads
• All execution context stored by kernel
• OS creates a kernel thread for every new thread

and schedules all threads

Implementation Option 2 (1:1)

Process OS
Thread Library

PC
SP

Registers

PC
SP

Registers

PC
SP

Registers

Oct 15, 2018 Sprenkle - CSCI330 16

9

Implementation Option 3 (N:M)
• OS supports multiple execution contexts, but a

process may have more threads than kernel
execution contexts.

• Userspace code tracks threads and manages
mapping them to kernel execution context.

Process OS
Thread Library

PC
SP

Registers

PC
SP

Registers

Oct 15, 2018 Sprenkle - CSCI330 17

Which threading model would you use in
your OS?

Oct 15, 2018 Sprenkle - CSCI330 18

A:
(N:1)

B:
(1:1)

C:
(N:M)

Process OS
Thread Library

PC
SP

Registers

Process OS
Thread Library

PC
SP

Registers

PC
SP

Registers

PC
SP

Registers

Process OS
Thread Library

PC
SP

Registers

PC
SP

Registers

10

Sprenkle - CSCI330 19Oct 15, 2018

Why Use Kernel Threads (1:1)?

• I/O: the OS can choose another thread in the same
process when a thread does I/O
Ø Non-blocking calls are good in theory, but difficult to

program in practice

• Simplicity of 1:1 — OS CPU scheduler will do all the
scheduling
Ø Kernel-level threads can exploit parallelism
Ø Different processors of a symmetric multiprocessor

Ø Different cores on a multicore CPU

• Used by systems: Linux, Solaris, Windows, pthreads
(usually)

• Also used by recent implementations of Java

Oct 15, 2018 Sprenkle - CSCI330 20

11

Extending OS Process Model
• Unless we say otherwise, assume 1:1 kernel

thread model.
ØOS is aware of every thread and schedules them all

independently
Ø Thread == “execution context”

• Before: storage for (one) execution context in
PCB
ØRegisters, PC, SP, kernel stack, etc.

• Now, with threads: PCB contains a collection of
threads
Ø Each thread represents an execution context

Oct 15, 2018 Sprenkle - CSCI330 21

JAVA THREADS
Thread Library

Oct 15, 2018 Sprenkle - CSCI330 22

12

Thread Libraries
• Provides the programmer with an API for

creating and managing threads
• Either all in user space with no kernel support

Ø invoking a function in the library results in a local
function call in user space and not a system call

• Or, implement a kernel-level library supported
directly by the operating system
Ø code and data structures for the library exist in

kernel space
Ø Invoking a function in the API for the library typically

results in a system call to the kernel.

Oct 15, 2018 Sprenkle - CSCI330 23

Java Thread API

• Allows threads to be created and managed

directly in Java programs

Ø JVM runs on top of a host operating system

Ø generally implemented using a thread library

available on the host system

Oct 15, 2018 Sprenkle - CSCI330 24

Java Thread API

JVM

OS Thread Library

User’s Java program
Automatically

runs in a
thread

13

Java Threads: The Basics
• Extend the Java Thread class

class MyThread extends Thread {
public void run() {

// do task: your code here
}

}

…

Thread t1 = new MyThread();
t1.start();

Oct 15, 2018 Sprenkle - CSCI330 25

Thread Methods

Oct 15, 2018 Sprenkle - CSCI330 26

Name Purpose

start Causes this thread to begin execution;
the Java Virtual Machine calls the run
method of this thread.

yield() A hint to the scheduler that the current
thread is willing to yield its current use of
a processor.

join(long
millis)

Waits at most millis milliseconds for
this thread to die.

Among others….

14

Java Threads: The Basics
public class RunnableTask implements Runnable {

public RunnableTask(…) {
// save any arguments or input for the task

(optional)
}

@Override
public void run() {

// required to implement for Runnable interface
…

}

}
…

RunnableTask task = new RunnableTask();
Thread t1 = new Thread(task, "thread1");
t1.start();

Oct 15, 2018 Sprenkle - CSCI330 27

Java review:
Tradeoffs of extending vs implementing

Example: Jabber
class Jabber implements Runnable {

String str;
public Jabber(String s){ str = s; }
public void run() {

while (true) {
System.out.print(str);
System.out.println();

}
}

}
public class JabberTest {

public static void main(String[] args) {
Jabber jabber1 = new Jabber("1");
Jabber jabber2 = new Jabber("2");
Thread t1 = new Thread(jabber1);
Thread t2 = new Thread(jabber2);
t1.start();
t2.start();

}
}Oct 15, 2018 Sprenkle - CSCI330 28JabberTest.java

15

Looking Ahead
• Project 2 due tonight
• Exam released after class on Wednesday

ØDue Friday at 5 p.m.
ØBring questions on Wednesday

Oct 15, 2018 Sprenkle - CSCI330 29

