
1

Today
• Threads

Ø Java API
Ø Thread Pools
Ø Synchronization

Oct 17, 2018 Sprenkle - CSCI330 1

Review
• What is a thread?

ØWhy should we consider writing multi-threaded
programs?

• What are the 3 main models for implementing
threads?
ØWhat are their tradeoffs?
ØWhich model will we assume?

• How do we create threads in Java?

Oct 17, 2018 Sprenkle - CSCI330 2

2

Review: Which threading model would you
use in your OS?

Oct 17, 2018 Sprenkle - CSCI330 3

A:
(N:1)

B:
(1:1)

C:
(N:M)

Process OS
Thread Library

PC
SP

Registers

Process OS
Thread Library

PC
SP

Registers

PC
SP

Registers

PC
SP

Registers

Process OS
Thread Library

PC
SP

Registers

PC
SP

Registers

Thread Implementation
Limitations
• N:1

Ø Few systems use because it can’t take advantage of
multiple processors

• 1:1
ØCreating a user thread requires creating the

corresponding kernel thread
• a large number of kernel threads may burden the

performance of a system

• N:M
Ø Flexibility à

difficult to implement and manage

Oct 17, 2018 Sprenkle - CSCI330 4

user

kernel

Process 0 Process 1

PP

TCB

user

kernel

Process 0 Process 1

TCB

3

Why Use Kernel Threads (1:1)?

• I/O: the OS can choose another thread in the same
process when a thread does I/O
Ø Non-blocking calls are good in theory, but difficult to

program in practice

• Simplicity of 1:1 — OS CPU scheduler will do all the
scheduling
Ø Kernel-level threads can exploit parallelism
Ø Different processors of a symmetric multiprocessor

Ø Different cores on a multicore CPU

• Used by systems: Linux, Solaris, Windows, pthreads
(usually)

• Also used by recent implementations of Java

Oct 17, 2018 Sprenkle - CSCI330 5

Review: Java Threads: The Basics
• Extend the Java Thread class

class MyThread extends Thread {
public void run() {

// do task: your code here
}

}

…

Thread t1 = new MyThread();
t1.start();

Oct 17, 2018 Sprenkle - CSCI330 6

4

Review: Java Threads: The Basics
public class RunnableTask implements Runnable {

public RunnableTask(…) {
// save any arguments or input for the task

(optional)
}

@Override
public void run() {

// required to implement for Runnable interface
…

}

}
…

RunnableTask task = new RunnableTask();
Thread t1 = new Thread(task, "thread1");
t1.start();

Oct 17, 2018 Sprenkle - CSCI330 7

Java review:
Tradeoffs of extending vs implementing

Example: Jabber
class Jabber implements Runnable {

String str;
public Jabber(String s){ str = s; }
public void run() {

while (true) {
System.out.print(str);
System.out.println();

}
}

}
public class JabberTest {

public static void main(String[] args) {
Jabber jabber1 = new Jabber("1");
Jabber jabber2 = new Jabber("2");
Thread t1 = new Thread(jabber1);
Thread t2 = new Thread(jabber2);
t1.start();
t2.start();

}
}Oct 17, 2018 Sprenkle - CSCI330 8JabberTest.java

What does this code do?
What will the output be?

5

Non-determinism and ordering

• Why do we care about the global ordering?
• Why is this ordering unpredictable?

Oct 17, 2018 Sprenkle - CSCI330 9

Time

Thread A

Thread B

Thread C

Global ordering

Non-determinism and ordering

• Why do we care about the global
ordering?
Ø Might have dependencies between events
Ø Different orderings can produce different

results

• Why is this ordering unpredictable?
Ø Can’t predict how fast processors will run,

how threads will be ordered

Oct 17, 2018 Sprenkle - CSCI330 10

Time

Thread A

Thread B

Thread C

Global ordering

6

Review:
Fork Problem

Oct 17, 2018 Sprenkle - CSCI330 11

int main() {
int x = 20;
int pid = fork();
int status;
if (pid != 0) {

printf("Parent's x before wait is %d\n",x);
x = x + 5;
wait(&status);
printf("Parent's x after wait is %d\n",x);
printf("Parent’s child’s status is %d\n",

status);
} else {

printf("Child's x before sleep is %d\n",x);
sleep(3);
x = x + 10;
printf("Child's x after sleep is %d\n",x);

}
}

Parent's x before wait is 20
Child's x before sleep is 20
Child's x after sleep is 30
Parent's x after wait is 25
Parent's child's status is 0

Top two lines of output
could be swapped.

Shared Address Space

Oct 17, 2018 Sprenkle - CSCI330 12

class SASThread extends Thread {
private int id;
private int[] array;

public SASThread(int id, int[] array) {
this.id = id;
this.array = array;

}

public void run() {
array[id] = id;

}
}

7

Shared Address Space

Oct 17, 2018 Sprenkle - CSCI330 13

public class SharedAddressSpace {
public static void main(String[] args) {

int[] vals = {-1, -1, -1};

Thread t0 = new SASThread(0, vals);
Thread t1 = new SASThread(1, vals);
Thread t2 = new SASThread(2, vals);

t0.start();
t1.start();
t2.start();

try {
t0.join();
t1.join();
t2.join();

} catch (InterruptedException e) {}

for(int i=0; i < vals.length; i++) {
System.out.println("vals[" + i + "] = " + vals[i]);

}
}

THREAD PERFORMANCE

Oct 17, 2018 Sprenkle - CSCI330 14

8

Performance of Thread Maintenance
• Creating a thread is cheaper than creating a new

process
ØBut it’s not free

• Maintaining thread information has an overhead
cost

• Common performance issues
ØCreating threads on-the-fly incurs costs

• increases latency of the task
ØCreating a lot of threads is costly (overhead,

maintenance, switching)
• Recall: throughput graph from scheduling

Oct 17, 2018 Sprenkle - CSCI330 15

Review: Throughput: reality

Oct 17, 2018 Sprenkle - CSCI330 16

Request arrival rate (offered load)

Response
rate

(throughput)

i.e., request
completion

rate

saturation

peak rate

Thrashing, also called congestion collapse
Real servers/devices often have some pathological behaviors at
saturation. E.g., they abort requests after investing work in them
(thrashing), which wastes work, reducing throughput.

delivered
throughput
(“goodput”)

Illustration only
Saturation behavior is
highly sensitive to
implementation
choices and quality.

9

Solution: Thread Pool
• Create a pool of threads before you need them

Ø Incur that cost before work begins
• When a request comes in, assign to an available

thread from the pool
ØWhen thread completes task, return thread to the

thread pool
• In Java, Executors, Executor and ExecutorService

classes
Ø Executors: factory class to create Executor and

ExecutorService objects
Oct 17, 2018 Sprenkle - CSCI330 17

SYNCHRONIZATION

Oct 17, 2018 Sprenkle - CSCI330 18

10

Consider a (Seemingly) Simple Program

Oct 17, 2018 Sprenkle - CSCI330 19

x = 5;

What is the output?

x=x+1;
print(x);

x=x+1;
print(x);

Thread 1 Thread 2

Consider a (Seemingly) Simple Program

Oct 17, 2018 Sprenkle - CSCI330 20

x = 5;

x=x+1;
print(x);

x=x+1;
print(x);

Possible outputs:
6 7
7 6
6 6

Thread 1 Thread 2

Why was this not an issue
with processes and fork?

11

Threads and the Scheduler
(or, Why Multi-threaded Programming is Hard)
Given two threads, A and B, how might their

executions be scheduled?
A
B

A
B

A
B

Oct 17, 2018 Sprenkle - CSCI330 21And, this is with just one processor…

Resource Trajectory Graphs

Oct 17, 2018 Sprenkle - CSCI330 22

Resource trajectory graphs (RTG) depict the “random walk”
through the space of possible program states.

RTG is useful to depict all possible
executions of multiple threads.

• I will draw them for only two threads
because slides are two-
dimensional.

• RTG for N threads is N-dimensional

• Thread i advances along axis i.

Each point represents one state in the
set of all possible system states.

Sn

So

Sm

12

Resource Trajectory Graphs

Oct 17, 2018 Sprenkle - CSCI330 23

This RTG depicts a schedule within the space of possible
schedules for a simple program of two threads sharing one core.

Blue advances
along the y-axis.

Purple advances
along the x-axis. The scheduler chooses the

path (schedule, event
order, or interleaving).

The diagonal is an idealized
parallel execution (two cores).

Every schedule
starts here.

EXIT

EXIT

Every schedule
ends here.

context
switch

From the point of view of
the program, the chosen
path is nondeterministic.

A race

start x=x+1

x=x+1

This is a valid schedule.

But the schedule interleaves the
executions of “x = x + 1” in the two
threads.

The variable x is shared.

This schedule can corrupt the value of
the shared variable x, causing the
program to execute incorrectly.

This is an example of a race: the
behavior of the program depends on
the schedule, and some schedules yield
incorrect results.

Oct 17, 2018 Sprenkle - CSCI330 24

13

Reading Between the Lines of C

Oct 17, 2018 Sprenkle - CSCI330 25

load
add
store

load
add
storeTwo executions of this code, so:

x is incremented by two.

load x, R2 ; load global variable x
add R2, 1, R2 ; increment: x = x + 1
store R2, x ; store global variable x

Two threads
execute this code
section. x is a
shared variable.

Interleaving matters

Oct 17, 2018 Sprenkle - CSCI330 26

load x, R2 ; load global variable x
add R2, 1, R2 ; increment: x = x + 1
store R2, x ; store global variable x

load

add

store

load

add

store

In this schedule, x is incremented only once: last writer wins.
The program breaks under this schedule. This bug is a race.

X

A race condition is any situation in which
the order of execution affects the final result.

14

Looking Ahead
• Project 3 – released Friday

ØBig step up on previous projects
• Upcoming Talks

Ø Today, Getting a PhD: Myths and Facts, 4 p.m.
• Parmly 405

ØMonday, 12:15 p.m. Alicia Bargar
• Sci Addn 202A – pizza lunch!

Oct 17, 2018 Sprenkle - CSCI330 27

Exam Logistics
• 2 hours to take exam
• Open notes, my slides, textbook
• Closed [other] internet

ØDo not download Wikipedia pages or do other things
that you’re pretty sure I wouldn’t want you to do

• 3 Sections
ØVery Short Answer
Ø Short Answer
ØApplied

Oct 17, 2018 Sprenkle - CSCI330 28

15

Recommendations
• Write your answers in Word and then copy to

Sakai to avoid issues with the site timing out
• Answer what the question asks and only that

ØAssemble thoughts, then write
• Be cognizant of the question’s point values

Ø Ex: Don’t spend a ton of time on a 4-point question

• If you need to look up the answer, skip the
question and come back to it later
ØOverhead costs of searching

Oct 17, 2018 Sprenkle - CSCI330 29

