
1

Today
• Project 3 - slides separate
• Threads

Ø Thread Pools
• Synchronization

ØRace conditions

Oct 22, 2018 Sprenkle - CSCI330 1

Review
• How do we create threads in Java?
• How does forking a process compare to

spawning a thread?
ØHow does the communication/collaboration change?

Oct 22, 2018 Sprenkle - CSCI330 2

2

Example: Jabber
class Jabber implements Runnable {

String str;
public Jabber(String s){ str = s; }
public void run() {

while (true) {
System.out.print(str);
System.out.println();

}
}

}
public class JabberTest {

public static void main(String[] args) {
Jabber jabber1 = new Jabber("1");
Jabber jabber2 = new Jabber("2");
Thread t1 = new Thread(jabber1);
Thread t2 = new Thread(jabber2);
t1.start();
t2.start();

}
}Oct 22, 2018 Sprenkle - CSCI330 3JabberTest.java

How many threads will run
during the execution of this program?

Example: Jabber
class Jabber implements Runnable {

String str;
public Jabber(String s){ str = s; }
public void run() {

while (true) {
System.out.print(str);
System.out.println();

}
}

}
public class JabberTest {

public static void main(String[] args) {
Jabber jabber1 = new Jabber("1");
Jabber jabber2 = new Jabber("2");
Thread t1 = new Thread(jabber1);
Thread t2 = new Thread(jabber2);
t1.start();
t2.start();

}
}Oct 22, 2018 Sprenkle - CSCI330 4JabberTest.java

How many threads will run
during the execution of this program? 3

3

THREAD PERFORMANCE

Oct 22, 2018 Sprenkle - CSCI330 5

Performance of Thread Maintenance
• Creating a thread is cheaper than creating a new

process
ØBut it’s not free

• Maintaining thread information has an overhead
cost

• Common performance issues
ØCreating threads on-the-fly incurs costs

• increases latency of the task
ØCreating a lot of threads is costly (overhead,

maintenance, switching)
• Recall: throughput graph from scheduling

Oct 22, 2018 Sprenkle - CSCI330 6

4

Review: Throughput: reality

Oct 22, 2018 Sprenkle - CSCI330 7

Request arrival rate (offered load)

Response
rate

(throughput)

i.e., request
completion

rate

saturation

peak rate

Thrashing, also called congestion collapse
Real servers/devices often have some pathological behaviors at
saturation. E.g., they abort requests after investing work in them
(thrashing), which wastes work, reducing throughput.

delivered
throughput
(“goodput”)

Illustration only
Saturation behavior is
highly sensitive to
implementation
choices and quality.

Solution: Thread Pool
• Create a pool of threads before you need them

Ø Incur that cost before work begins
• When a request comes in, assign to an available

thread from the pool
ØWhen thread completes task, return thread to the

thread pool
• In Java, Executors, Executor and ExecutorService

classes
Ø Executors: factory class to create Executor and

ExecutorService objects
Oct 22, 2018 Sprenkle - CSCI330 8

5

SYNCHRONIZATION

Oct 22, 2018 Sprenkle - CSCI330 9

Consider a (Seemingly) Simple Program

Oct 22, 2018 Sprenkle - CSCI330 10

x = 5;

What is the output?

x=x+1;
print(x);

x=x+1;
print(x);

Thread 1 Thread 2

6

Consider a (Seemingly) Simple Program

Oct 22, 2018 Sprenkle - CSCI330 11

x = 5;

x=x+1;
print(x);

x=x+1;
print(x);

Thread 1 Thread 2

Possible outputs:
• 6 7
• 6 6

Why was this not an issue
with processes and fork?

Threads and the Scheduler
(or, Why Multi-threaded Programming is Hard)
Given two threads, A and B, how might their

executions be scheduled?
A
B

A
B

A
B

Oct 22, 2018 Sprenkle - CSCI330 12And, this is with just one processor…

7

Reading Between the Lines of C

Oct 22, 2018 Sprenkle - CSCI330 13

load
add
store

load
add
storeTwo executions of this code, so:

x is incremented by two.

load x, R2 ; load global variable x
add R2, 1, R2 ; increment: x = x + 1
store R2, x ; store global variable x

Two threads
execute this code
section. x is a
shared variable.

Other languages have similar low-level decompositions

Interleaving matters

Oct 22, 2018 Sprenkle - CSCI330 14

load x, R2 ; load global variable x
add R2, 1, R2 ; increment: x = x + 1
store R2, x ; store global variable x

load

add

store

load

add

store

In this schedule, x is incremented only once: last writer wins.
The program breaks under this schedule. This bug is a race.

X

A race condition is any situation in which
the order of execution affects the final result.

8

Resource Trajectory Graphs

Oct 22, 2018 Sprenkle - CSCI330 15

Resource trajectory graphs (RTG) depict the “random walk”
through the space of possible program states.

RTG is useful to depict all possible
executions of multiple threads.

• I will draw them for only two threads
because slides are two-dimensional

• RTG for N threads is N-dimensional

• Thread i advances along axis i.

Each point represents one state in the set
of all possible system states.

Sn

So

Sm

Resource Trajectory Graphs

Oct 22, 2018 Sprenkle - CSCI330 16

This RTG depicts a schedule within the space of possible
schedules for a simple program of two threads sharing one core.

Blue advances
along the y-axis.

Purple advances
along the x-axis. The scheduler chooses the

path (schedule, event
order, or interleaving).

The diagonal is an idealized
parallel execution (two cores).

Every schedule
starts here.

EXIT

EXIT

Every schedule
ends here.

context
switch

From the point of view of
the program, the chosen
path is nondeterministic.

9

A race

start x=x+1

x=x+1

This is a valid schedule.
But the schedule interleaves the
executions of “x = x + 1” in the
two threads.

The variable x is shared.

This schedule can corrupt the value of
the shared variable x, causing the
program to execute incorrectly.

This is an example of a race: the
behavior of the program depends on
the schedule, and some schedules yield
incorrect results.

Oct 22, 2018 Sprenkle - CSCI330 17

Concurrency control
• The scheduler (and the machine)

select the execution order
of threads

• Each thread executes a sequence of instructions, but
their sequences may be arbitrarily interleaved
Ø E.g., from the point of view of loads/stores on memory

• Each possible execution order is a schedule
• A thread-safe program must exclude schedules that

lead to incorrect behavior
• Called synchronization or concurrency control

Oct 22, 2018 Sprenkle - CSCI330 18

10

This is not a game

Oct 22, 2018 Sprenkle - CSCI330 19

But we can think of it as a
game.

1. You write your program.
2. The game begins when you

submit your program to your
adversary: the scheduler.

3. The scheduler chooses all the
moves while you watch.

4. Your program may constrain
the set of legal moves.

5. The scheduler searches for a
legal schedule that breaks
your program.

6. If it succeeds, then you lose
(your program has a race).

7. You win by not losing.

x=x+1

x=x+1

þ

The need for mutual exclusion

Oct 22, 2018 Sprenkle - CSCI330 20

The program may fail if the
schedule enters the gray box,
i.e., if two threads execute the
critical section concurrently.

The two threads must not both
operate on the shared global x
“at the same time”.x=x+1

x=x+1

x=???

þ

critical section

11

Looking Ahead
• Mechanisms to protect against race conditions
• Project 3 due in two Fridays

Oct 22, 2018 Sprenkle - CSCI330 21

