
1

Today
• Synchronization

ØRace conditions

Oct 24, 2018 Sprenkle - CSCI330 1

Review:
Consider a (Seemingly) Simple Program

Oct 24, 2018 Sprenkle - CSCI330 2

x = 5;

x=x+1;
print(x);

x=x+1;
print(x);

Thread 1 Thread 2

Possible outputs:
• 6 7
• 6 6

• Why were these the possible outputs?
• Could 7 6 be a possible output?
• What is a race condition?

2

Review:
Consider a (Seemingly) Simple Program

Oct 24, 2018 Sprenkle - CSCI330 3

x = 5;

x=x+1;
print(x);

x=x+1;
print(x);

Thread 1 Thread 2

Possible outputs:
• 6 7
• 6 6

• Why were these the possible outputs?
• x is a shared variable
• x=x+1 is not an atomic operation

• Could 7 6 be a possible output?
• Depends on if print(x) is an atomic

operation
• Don’t assume atomicity

Review: Interleaving matters

Oct 24, 2018 Sprenkle - CSCI330 4

load x, R2 ; load global variable x
add R2, 1, R2 ; increment: x = x + 1
store R2, x ; store global variable x

load

add

store

load

add

store

In this schedule, x is incremented only once: last writer wins.
The program breaks under this schedule. This bug is a race.

X

A race condition is any situation in which
the order of execution affects the final result.

3

Resource Trajectory Graphs

Oct 24, 2018 Sprenkle - CSCI330 5

This RTG depicts a schedule within the space of possible
schedules for a simple program of two threads sharing one core.

Blue advances
along the y-axis.

Purple advances
along the x-axis. The scheduler chooses the

path (schedule, event
order, or interleaving).

The diagonal is an idealized
parallel execution (two cores).

Every schedule
starts here.

EXIT

EXIT

Every schedule
ends here.

context
switch

From the point of view of
the program, the chosen
path is nondeterministic.

A race

start x=x+1

x=x+1

This is a valid schedule.
But the schedule interleaves the
executions of “x = x + 1” in the
two threads.

The variable x is shared.

This schedule can corrupt the value of
the shared variable x, causing the
program to execute incorrectly.

This is an example of a race: the
behavior of the program depends on
the schedule, and some schedules yield
incorrect results.

Oct 24, 2018 Sprenkle - CSCI330 6

4

Concurrency control
• The scheduler (and the machine)

select the execution order
of threads

• Each thread executes a sequence of instructions, but
their sequences may be arbitrarily interleaved
Ø E.g., from the point of view of loads/stores on memory

• Each possible execution order is a schedule
• A thread-safe program must exclude schedules that

lead to incorrect behavior
Ø Called synchronization or concurrency control

Oct 24, 2018 Sprenkle - CSCI330 7

This is not a game

Oct 24, 2018 Sprenkle - CSCI330 8

But we can think of it as a game

1. You write your program.
2. The game begins when you

submit your program to your
adversary: the scheduler.

3. The scheduler chooses all the
moves while you watch.

4. Your program may constrain the
set of legal moves.

5. The scheduler searches for a
legal schedule that breaks your
program.

6. If it succeeds, then you lose
(your program has a race).

7. You win by not losing.

x=x+1

x=x+1

þ

critical section

You should pretend to be the adversarial scheduler for your programs.

5

The need for mutual exclusion

Oct 24, 2018 Sprenkle - CSCI330 9

The program may fail if the
schedule enters the gray box,
i.e., if two threads execute the
critical section concurrently.

The two threads must not both
operate on the shared global x
“at the same time”.x=x+1

x=x+1

þ

critical section

RESPONSIBLE ROOMMATES

Oct 24, 2018 Sprenkle - CSCI330 10

6

Too Much Milk!

You
• Arrive home

• Look in the fridge; out of milk

• Go to store

• Buy milk

• Arrive home; put milk away

Your Roommate

• Arrive home

• Look in fridge; out of milk

• Go to store

• Buy milk

• Arrive home; put milk away

• Oh, no!What did we want to happen?
What happened?

Oct 24, 2018 Sprenkle - CSCI330 11

Too Much Milk!

• What do we want to happen?
ØOnly one person buys milk at a time AND
ØSomeone buys milk if you need it

• What happened?
ØLack of communication!

These are the correctness
properties for this problem.

Oct 24, 2018 Sprenkle - CSCI330 12

7

Analyzing Problem
• What would the result have been if:

Ø your roommate had arrived home for the first time after you
had come back from the store?

Ø you arrived home after your roommate came back from the
store?

Ø you were at the store when your roommate came back, but
your roommate looked in the fridge after you were back from
the store?

• Example of a race condition
• What guarantees do we have about how our

people/threads will be scheduled?
• How can we solve this problem?

Oct 24, 2018 Sprenkle - CSCI330 13

Too Much Milk: Solution #1

You (Thread A)
if(noMilk && noNote) {

leave note;
buy milk;
remove note;

}

Your Roommate (Thread B)
if(noMilk && noNote) {

leave note;
buy milk;
remove note;

}

Oct 24, 2018 Sprenkle - CSCI330 14

Does this work?
How can you determine if it works?

noMilk = true
noNote = true

8

Too Much Milk: Solution #1

You (Thread A)
if(noMilk && noNote) {

leave note;

buy milk;

remove note;

}

Your Roommate (Thread B)
if(noMilk && noNote) {

leave note;

buy milk;

remove note;

}

How do you know if it works?

Create some schedules or show it does work.
This solution can work, bUT, not always.
And that’s the issue.
Oct 24, 2018 Sprenkle - CSCI330 15

noMilk = true

Too Much Milk: Solution #2

You (Thread A)
leave note A

if(no noteB)

if(noMilk)

buy milk;

remove note A

Your Roommate (Thread B)
leave note B

if(no noteA)

if(noMilk)

buy milk;

remove note B

Does this work?

Oct 24, 2018 Sprenkle - CSCI330 16

noMilk = true
noteA = false
noteB = false

9

Too Much Milk: Solution #2

You (Thread A)
leave note A
if(no noteB)

if(noMilk)
buy milk;

remove note A

Your Roommate (Thread B)
leave note B
if(no noteA)

if(noMilk)
buy milk;

remove note B

Problem: Starvation!

Oct 24, 2018 Sprenkle - CSCI330 17

noMilk = true
noteA = false
noteB = false

Too Much Milk: Solution #3

You (Thread A)
leave note A
while(noteB)

do nothing;

if(noMilk)
buy milk;

remove note A

Your Roommate (Thread B)
leave note B
if(no noteA)

if(noMilk)
buy milk;

remove note B

Does this work?

Oct 24, 2018 Sprenkle - CSCI330 18

noMilk = true
noteA = false
noteB = false

10

Too Much Milk: Solution #3

You (Thread A)
leave note A
while(note B)

do nothing;

if(noMilk)
buy milk;

remove note A

Your Roommate (Thread B)
leave note B
if(no noteA)

if(noMilk)
buy milk;

remove note B

Yes! Explain why it works!
(harder than finding a schedule

that breaks it)Oct 24, 2018 Sprenkle - CSCI330 19

Why is it correct?

At this if, either there is a note
A or not.

If there is a note, then thread
A is checking and buying
milk as needed or is waiting
for B to quit, so B quits by
removing note B.

If not, it is safe for B to check
and buy milk, if needed.
(Thread A has not started
yet.)

Your Roommate (Thread B)

leave note B
if(noNote A)

if(noMilk)
buy milk;

remove note B

Oct 24, 2018 Sprenkle - CSCI330 20

11

Why is it correct?

You (Thread A)
leave note A
while(note B)

do nothing;

if(noMilk)
buy milk;

remove note A

At this while, either there is a
note B or not.

If yes, A waits until there is no
longer a note B, and either
finds milk that B bought or
buys it if needed.

If not, it is safe for A to buy
since B has either not
started yet or quit.

Oct 24, 2018 Sprenkle - CSCI330 21

Why is it correct?
Thread B buys milk (which Thread A finds) or not,

but either way it removes note B. Since Thread
A loops, it waits for B to buy milk or not, and
then if B did not buy it, it buys the milk.

Oct 24, 2018 Sprenkle - CSCI330 22

12

So it’s correct, but… is it good?
1. It is complicated. It was hard to convince

ourselves this solution worked.
2. It is asymmetrical---thread A and thread B are

different.
Ø What would we need to do to add new

threads/roommates?
3. A is busy waiting, or consuming CPU resources

despite the fact it is not doing any useful work.

Oct 24, 2018 Sprenkle - CSCI330 23

Too Much Milk: Lock Solution

You (Thread A)
Lock->Acquire();
if(noMilk)

buy milk;
Lock->Release();

Your Roommate (Thread B)
Lock->Acquire();
if(noMilk)

buy milk;
Lock->Release();

Oct 24, 2018 Sprenkle - CSCI330 24

Acquiring and Releasing the Lock is an atomic operation

13

Terminology Review
• Atomic Operation: an operation that is

uninterruptible
• Synchronization: Using atomic operations to

ensure cooperation between threads
• Mutual Exclusion: Exactly one thread (or

process) is doing a particular activity at a time.
ØUsually related to critical sections.

• Critical Section: A piece of code that only one
thread can execute at a time

Critical Sections and Correctness
Four properties are required for correctness:
1. Safety: only one thread in the critical section
2. Liveness: if no threads are executing a critical

section and a thread wishes to enter a critical
section, that thread must be guaranteed to
eventually enter the critical section

3. Bounded waiting: if a thread wishes to enter a
critical section, then there exists a bound on the
number of other threads that may enter the critical
section before that thread does

4. Failure atomicity: it’s okay for a thread to die in the
critical section

14

Looking Ahead
• Moved my Wed office hours to Thurs
• Project 3 due in two Fridays

Ø Suggested intermediate deadline: Step 3 by Friday
ØReload the page, since I add clarifications

Oct 24, 2018 Sprenkle - CSCI330 27

