
1

Today
• Synchronization

Ø Formalizing synchronization
Ø Locks

Oct 26, 2018 Sprenkle - CSCI330 1

Project 3: Disk Directory Visualization

Sprenkle - CSCI330 2

0 Bootloader
1 Disk Map
2 Disk Dir
3 KERNEL
… …
19 message.txt
20 Bigfile
21 Bigfile
22 Bigfile
23 FILE
… …
… …

floppya.img

K E R N E L 3 4 5 6 …
m e s s a g 19 0 0 0 …
B i g f i l 20 21 22 0 …
F I L E 0 0 23 0 0 0 …
…

Conceptually, 32 characters “wide”
Disk Directory ßhow big is this?

16 entries

You can see what your disk directory looks like
by using hexdump -C floppya.img

Oct 26, 2018

2

Review

• What problem were we trying to solve?

ØHow did we try to solve it? What were some

problems with the proposed solutions?

• What is

ØA schedule?

ØA race condition?

ØA critical section?

ØAn atomic operation?

• Given a proposed solution, how do we know if

it’s right?
Oct 26, 2018 Sprenkle - CSCI330 3

Review: Terminology
• Schedule: an ordering/interleaving of

instructions/events
• Atomic Operation: an operation that is

uninterruptible
• Synchronization: Using atomic operations to ensure

cooperation between threads
• Mutual Exclusion: Exactly one thread (or process) is

doing a particular activity at a time. Usually related
to critical sections

• Critical Section: A piece of code that only one
thread can execute at a time

Oct 26, 2018 Sprenkle - CSCI330 4

3

Formalizing “Responsible Roommates”
• Shared variable: noMilk
• Operations on shared variable

Ø “Look in the fridge for milk” – check a variable
Ø “Put milk away” – update a variable

Oct 26, 2018 Sprenkle - CSCI330 5

Critical Section Problem
• Consider system of n processes {p0, p1, … pn-1}
• Each process has critical section segment of code

ØProcess may be changing shared variables, updating
table, writing file, etc.

• When one process is in critical section, no other
may be in its critical section

• Critical section problem is to design protocol to
ensure atomic execution of critical section

Oct 26, 2018 Sprenkle - CSCI330 6

4

Formalizing “Responsible Roommates”

You (Thread A)
leave note A
while(note B)

do nothing;

if(noMilk)
buy milk;

remove note A

Your Roommate (Thread B)
leave note B
if(noNote A)

if(noMilk)
buy milk;

remove note B

Entry
Section

Critical Section

Exit Section

Oct 26, 2018 Sprenkle - CSCI330 7

Critical Sections and Correctness

Four properties are required for correctness:
1. Safety/Mutual Exclusion: only one thread in the critical

section

2. Liveness/Progress: if no threads are executing a critical
section and a thread wishes to enter a critical section,
that thread must be guaranteed to eventually enter the
critical section

3. Bounded waiting: if a thread wishes to enter a critical
section, then there exists a bound on the number of
other threads that may enter the critical section before
that thread does

4. Failure atomicity: it’s okay for a thread to die in the
critical section

Oct 26, 2018 Sprenkle - CSCI330 8

What do “safety” and “liveness” mean
in the outcome of the

Responsible Roommate problem?

5

Formalizing “Responsible Roommates”
• Shared variable: noMilk
• Operations on shared variable

Ø “Look in the fridge for milk” – check a variable
Ø “Put milk away” – update a variable

• Safety property
ØAt most one person buys milk

• Liveness
Ø Someone buys milk when needed

Oct 26, 2018 Sprenkle - CSCI330 9

Safety and Liveness, More Generally
• Properties defined over the execution of a program
• Safety: “nothing bad happens”

Ø Holds in every finite execution prefix
• Windows never crashes
• No patient is ever given the wrong medication
• A program never terminates with the wrong answer

• Liveness: “something good eventually happens”
Ø No partial execution is irremediable

• Windows always reboots
• Medications are eventually distributed to patients
• A program eventually terminates

Oct 26, 2018 Sprenkle - CSCI330 10

6

Mutual Exclusion
• Exactly one thread (or process) is doing a

particular activity at a time. Usually related to
critical sections.
ØActive thread excludes its peers

• Some computer resources cannot be accessed by
multiple threads at the same time
Ø E.g., a printer can’t print two documents at once

• For shared memory architectures, data
structures are often mutually exclusive
Ø Two threads adding to a linked list can corrupt the

list
Oct 26, 2018 Sprenkle - CSCI330 11

Critical Sections:
When You Want Mutual Exclusion

Anytime you access shared data
Ø If a thread checks a value

• Even if it is “just a quick” read
Ø If a thread updates a piece of shared data

• What data is shared?

Oct 26, 2018 Sprenkle - CSCI330 12

7

Atomic Operations
• Operations that are uninterruptible

Ø Indivisible operations that cannot be interleaved
with or split by other operations

ØRun to completion or not at all

• What operations are uninterruptible?
Ø Essentially, only load and store

• But not necessarily – depends on architecture

Oct 26, 2018 Sprenkle - CSCI330 13

Assume not-explicitly-atomic statements are not atomic
when you need synchronization

Our Ideal Solution
• Satisfies correctness properties

Ø Safety, liveness, bounded wait
Ø Easy to convince ourselves it does so

• No busy waiting (spin locks)
Ø Threads should block when waiting and then be

awakened when it is their turn (a wait queue)
• Extendable to many threads (not just two!)

Ø Symmetric

Oct 26, 2018 Sprenkle - CSCI330 14

8

Support for Synchronization
Most systems provide support for atomic routines
for synchronization
• Locks: One thread holds a lock at a time,

executes the critical section, releases the lock
• Semaphores: More general version of locks
• Monitors: Connects shared data to

synchronization primitive

All require some hardware support (and waiting!)
Oct 26, 2018 Sprenkle - CSCI330 15

LOCKS
Or Mutexes or Monitors

Oct 26, 2018 Sprenkle - CSCI330 16

9

A Lock or Mutex

• Locks enforce mutual exclusion in conflicting critical
sections
Ø A special data item in memory

• API methods: Acquire and Release
Ø Also called Lock and Unlock

• A thread should pair calls to Acquire and Release
Ø Acquire upon entering a critical section

Ø Release upon leaving a critical section

• Between Acquire/Release, the thread holds the lock

• Acquire does not return until any previous holder
releases

• Waiting locks can spin (a spinlock) or block (a mutex)

Oct 26, 2018 Sprenkle - CSCI330 17

A A

R

R

Definition of a lock (mutex)
• Acquire + Release ops on lock L are strictly paired

ØAfter acquire completes, the caller holds (owns) the
lock L until the matching release

• Acquire + release pairs on each lock are ordered
Ø Total order: each lock L has at most one holder at

any given time
Ø That property is mutual exclusion; L is a mutex

Oct 26, 2018 Sprenkle - CSCI330 18

10

Portrait of a Lock in Motion

A

A

R

R

The program may fail if it
enters the grey box.

A lock (mutex) prevents the
schedule from ever entering
the gray box, ever:
both threads would have to
hold the same lock at the same
time, and locks don’t allow thatx=x+1

x=x+1

x=???

þ

Oct 26, 2018 Sprenkle - CSCI330 19

Locks and Responsible Roommates
Our solution used notes as locks:

1. Leave a note (acquire a lock)
2. Remove a note (release the lock)
3. Do not buy any milk if there is a note (wait)

What would it look like with actual locks?

Oct 26, 2018 Sprenkle - CSCI330 20

11

Responsible Roommates:
Lock Solution
You (Thread A)
Lock->Acquire();
if(noMilk)

buy milk;
Lock->Release();

Your Roommate (Thread B)
Lock->Acquire();
if(noMilk)

buy milk;
Lock->Release();

Oct 26, 2018 Sprenkle - CSCI330 21

Do we know this works?

What if you wanted orange juice and your roommate wanted milk?
How does the solution differ?

Handing off a lock

First I go.

Then you go.

release

acquire

Handoff
The nth release, followed by the (n+1)th acquire

serialized
(one after the other)

Oct 26, 2018 Sprenkle - CSCI330 22

12

Mutual exclusion in Java
• Mutexes are built in to every Java object
• Every Java object is/has a monitor

Ø At most one thread may “own” a monitor at any given
time.

• A thread becomes owner of an object’s monitor by
Ø executing an object method declared as synchronized
Ø executing a block that is synchronized on the object

public void increment() {
synchronized(this) {

x = x + 1;
}

}

public synchronized void
increment() {

x = x + 1;
}

Oct 26, 2018 Sprenkle - CSCI330 23

Lock It Down

start

context switch

A Rx=x+1

A

R

x=x+1

þ

Use a lock (mutex) to synchronize
access to a data structure that is
shared by multiple threads.

A thread acquires (locks) the
designated mutex before operating on
a given piece of shared data.

The thread holds the mutex. At most
one thread can hold a given mutex at a
time (mutual exclusion).

Thread releases (unlocks) the mutex
when done. If another thread is
waiting to acquire, then it wakes.

The mutex bars entry to the gray box: the threads cannot both hold the mutex.
Oct 26, 2018 Sprenkle - CSCI330 24

13

Discussion: Why only Acquire/Release?
• The Lock API seems a little too simple
• Suppose we add a method to the Lock API that

asks if the lock is free (isFree)
Ø Suppose it returns true. Then what?

Oct 26, 2018 Sprenkle - CSCI330 25

Will this code work?

if (obj == null) {
lock.acquire();
obj = newObj();
lock.release();

}
obj.method();

Obj newObj() {
obj = new Obj(…);
obj.field1 = …
obj.field2 = …
return obj;

}

Oct 26, 2018 Sprenkle - CSCI330 26

Two threads are executing this [same] code.
Shared variable obj is initially null

14

Will this code work?
if (obj == null) {

lock.acquire();
obj = newObj();
lock.release();

}
obj.method();

Obj newobj() {
obj = new Obj(…);
obj.field1 = …
obj.field2 = …
return obj;

}

Oct 26, 2018 Sprenkle - CSCI330 27

Consider:
• purple saw that obj was null, acquires the lock, and starts creating

the new obj.
• Then purple is preempted.
• Blue then checks and sees that obj is not null, so it skips down to

obj.method() before obj is done being initialized

Will this code work?

lock.acquire();
if (obj == null) {

obj = newObj();
}
lock.release();
obj.method();

Obj newObj() {
obj = new Obj(…);
obj.field1 = …
obj.field2 = …
return obj;

}

Oct 26, 2018 Sprenkle - CSCI330 28

Assume method is thread safe.

15

Will this code work?

lock.acquire();
if (obj == null) {

obj = newObj();
}
lock.release();
obj.method();

Obj newObj() {
obj = new Obj(…);
obj.field1 = …
obj.field2 = …
return obj;

}

Oct 26, 2018 Sprenkle - CSCI330 29

YES!

Assume method is thread safe.

Locking a critical section

Oct 26, 2018 Sprenkle - CSCI330 30

mx->Acquire();
x = x + 1;
mx->Release();

mx->Acquire();
x = x + 1;
mx->Release();

load
add
store

load
add
store

load
add
store

load
add
store

load
add
store

load
add
store

Holding a shared mutex prevents competing threads from
entering a critical section. If the critical section code acquires the
mutex, then its execution is serialized: only one thread runs it at a time.

þ

þsynchronized
serialized
atomic

16

Does this work?

Oct 26, 2018 Sprenkle - CSCI330 31

x = x + 1;

mx->Acquire();
x = x + 1;
mx->Release();

load
add
store

load
add
store

A

B

Does this work? NO!

Oct 26, 2018 Sprenkle - CSCI330 32

x = x + 1;

mx->Acquire();
x = x + 1;
mx->Release();

load
add
store

load
add
store

The locking discipline is not followed:
purple fails to acquire the lock mx.

Or rather: purple accesses variable x
through another program section A
that is mutually critical with B,
but does not acquire the mutex.

A locking scheme is a convention that
the entire program must follow.

A

B

17

Does this work?

Oct 26, 2018 Sprenkle - CSCI330 33

mx->Acquire();
x = x + 1;
mx->Release();

load
add
store

load
add
store

B

lock->Acquire();
x = x + 1;
lock->Release();

A

Does this work? NO!

Oct 26, 2018 Sprenkle - CSCI330 34

mx->Acquire();
x = x + 1;
mx->Release();

load
add
store

load
add
store

Purple is acquiring a lock but not the
“right” lock.

The threads are not using the same
lock, and that’s what matters.

A locking scheme is a convention that
the entire program must follow.

B

lock->Acquire();
x = x + 1;
lock->Release();

A

18

Revisiting a (Seemingly) Simple Program

Oct 26, 2018 Sprenkle - CSCI330 35

l = new Lock();
x = 5;

What is the output?

l.acquire();
x=x+1;
print(x);
l.release();

l.acquire();
x=x+1;
print(x);
l.release();

Rules for Using Locks
• Lock is initially free
• Always acquire lock before accessing shared

data structure
Ø Likely: Beginning of procedure

• Always release after finished with shared data
Ø Likely: End of procedure
ØOnly the lock holder can release

• Never access shared data without lock

Oct 26, 2018 Sprenkle - CSCI330 36

19

Debugging non-determinism
• Requires worst-case reasoning

Ø Eliminate all ways for program to break
• Debugging is hard

Ø Can’t test all possible
interleavings

Ø Bugs may only happen
sometimes

• Heisenbug
Ø Re-running program

may make the bug
disappear

Ø Doesn’t mean it isn’t still there!

Oct 26, 2018 Sprenkle - CSCI330 37

Looking Ahead
• Project 3 due next Friday

Ø Suggested intermediate deadline: Step 3 by today
ØReload the page, since I add clarifications

Oct 26, 2018 Sprenkle - CSCI330 38

