
1

Today
• Synchronization

Ø Implementing Locks

Oct 29, 2018 Sprenkle - CSCI330 1

Review
• What are these in the context of

synchronization?
Ø Liveness/Progress
Ø Safety/Mutual Exclusion

• What is a Lock?
ØWhy use locks?
ØWhat is its API? What do those method calls do?
ØWhat are the rules of Locks?

• Why is debugging concurrency/non-determinism
difficult?

Oct 29, 2018 Sprenkle - CSCI330 2

2

Review: Terminology
• Safety/Mutual Exclusion: only one thread in the

critical section
• Liveness/Progress: if no threads are executing a

critical section and a thread wishes to enter a
critical section, that thread must be guaranteed
to eventually enter the critical section

• Lock: synchronization mechanism to prevent
concurrent access (mutual exclusion)
ØAlso called mutex or mutex lock

Oct 29, 2018 Sprenkle - CSCI330 3

Review: Locks

•Acquire
Øwait until lock is free, then take it

•Release
Ø release lock, waking up anyone waiting for it

1. At most one lock holder at a time (safety)

2. If no one holding, acquire gets lock (progress)

3. If all lock holders finish and no higher priority

waiters, waiter eventually gets lock (progress)

Oct 29, 2018 Sprenkle - CSCI330 4

3

Review: A Lock or Mutex
• Locks enforce mutual exclusion in

conflicting critical sections
• API methods: Acquire and Release

ØAlso called Lock and Unlock
ØCall Acquire upon entering a critical

section
ØCall Release upon leaving a critical section

• Between Acquire/Release, the thread
holds the lock

• Acquire does not return until any
previous holder releases

Oct 29, 2018 Sprenkle - CSCI330 5

A A

R

R

Review: Rules for Using Locks
• Lock is initially free
• Always acquire lock before accessing shared

data structure
Ø Likely: Beginning of procedure

• Always release after finished with shared data
Ø Likely: End of procedure
ØOnly the lock holder can release

• Never access shared data without lock

Oct 29, 2018 Sprenkle - CSCI330 6

4

Review: Debugging non-determinism
• Requires worst-case reasoning

Ø Eliminate all ways for program to break
• Debugging is hard

Ø Can’t test all possible
interleavings

Ø Bugs may only happen
sometimes

• Heisenbug
Ø Re-running program

may make the bug
disappear

Ø Doesn’t mean it isn’t still there!
Oct 29, 2018 Sprenkle - CSCI330 7

IMPLEMENTING LOCKS

Oct 29, 2018 Sprenkle - CSCI330 8

5

Lock Goals
• What are our goals for locks?

Ø That will help us to figure out how to implement
them

• Consider a lock
Ø For a highly contended resource
ØOn a resource-strapped system

Oct 29, 2018 Sprenkle - CSCI330 9

Lock Goals
• Must enforce mutual exclusion
• Reasonable fairness (liveness)

ØDoes each thread contending for the lock get a fair
shot at acquiring it once it is free?

ØDoes any thread contending for the lock starve while
doing so, thus never obtaining it?

• Reasonable performance
ØOverhead in using the lock
Ø Scenarios: one thread acquiring/releasing lock,

multiple threads/single CPU, multiple
threads/multiple CPUs

Oct 29, 2018 Sprenkle - CSCI330 10

6

Key Observations
• Why do we need mutual exclusion?

Ø The scheduler!
• On a uniprocessor, a operation is atomic if no

context switch can occur in the middle of the
operation

• So, how about mutual exclusion by preventing
the context switch?

What causes context switches?

Oct 29, 2018 Sprenkle - CSCI330 11

Key Observations
• Why do we need mutual exclusion?

Ø The scheduler!
• On a uniprocessor, a operation is atomic if no

context switch can occur in the middle of the
operation
ØMutual exclusion by preventing the context switch

• Context switches occur because of
Ø Internal events: systems calls and exceptions
Ø External events: interrupts

Oct 29, 2018 Sprenkle - CSCI330 12

7

Disabling Interrupts
Assume: single processor system
• Tells the hardware to delay handling any

external events until after the thread is finished
modifying the critical section

• In some implementations, done by setting and
unsetting the interrupt status bit

Oct 29, 2018 Sprenkle - CSCI330 13

Disabling Interrupts for Locks

Lock::Acquire() {
disable interrupts;

}

Lock::Release() {
enable interrupts;

}

Analyze the solution:
• Does it work?
• What are its strengths and weaknesses?

Oct 29, 2018 Sprenkle - CSCI330 14

8

Disabling Interrupts for Locks

Lock::Acquire() {
disable interrupts;

}

Lock::Release() {
enable interrupts;

}

• Once interrupts are disabled, thread can’t be stopped
• Critical section can be very long
• Can’t wait too long to respond to interrupts à may

be lost/missed
• Any program can call lock methods. So…
• Only works for single processor

Works in that it enforces mutual exclusion but …

Oct 29, 2018 Sprenkle - CSCI330 15

Disabling Interrupts: Simple Solution

Lock::Acquire(){
disable interrupts;

while(value == BUSY){

enable interrupts;

disable interrupts;

}

value = BUSY;

enable interrupts;

}

Lock::Release(){
disable interrupts;

value = FREE;

enable interrupts;

}

Idea: Shorten the length of the critical section.
But then …?
Oct 29, 2018 Sprenkle - CSCI330 16

9

Larger Question: Is this a good idea?

• Should user processes be able to disable interrupts?

Ø No.

• What happens on multiprocessors?

Ø Disabling interrupts affects only the CPU on which the

thread is executing

• Threads on other CPUs can enter the critical section!

Ø Or, need to disable interrupts on all CPUs – expensive!

• On a uniprocessor, the OS may use this technique

when it is updating kernel data structures

Oct 29, 2018 Sprenkle - CSCI330 17

What are we trying to do?
• Ensure mutual exclusion, liveness, fairness, etc.
• But, practically?

Ø See if another thread is executing the section (read a
variable)

Ø If it isn’t, grab the lock (modify and write a variable)
Ø If it is, wait
ØAtomically

Oct 29, 2018 Sprenkle - CSCI330 18

10

Proposed Lock Implementation
avail = 0;

acquire() {
while (avail == 1)

{;}
ASSERT (avail == 0);
avail = 1;

}

release() {
ASSERT(avail == 1);
avail = 0;

}

Busy-wait until lock is free.

Global lock variable

Oct 29, 2018 Sprenkle - CSCI330 19

ASSERT: if expression evaluates to 0,
Display error message and abort program

Spinlock: a First Try
avail = 0;

acquire() {
while (avail == 1)

{;}
ASSERT (avail == 0);
avail = 1;

}

release() {
ASSERT(avail == 1);
avail = 0;

}

Busy-wait until lock is free.

Global spinlock variable

Spinlocks provide mutual exclusion
among cores without blocking
à don’t need to context switch

Spinlocks are useful for lightly
contended critical sections
where there is no risk that a thread is
preempted while it is holding the lock

Oct 29, 2018 Sprenkle - CSCI330 20

ASSERT: if expression evaluates to 0,
Display error message and abort program

11

Spinlock: What Went Wrong

Oct 29, 2018 Sprenkle - CSCI330 21

avail = 0;

acquire() {
while (avail == 1)

{;}
ASSERT (avail == 0);
avail = 1;

}

release() {
ASSERT(avail == 1);
avail = 0;

}

Race to acquire
Two (or more) cores may see
avail == 0.

How do we fix this problem?

Hardware Support
• To implement mutual exclusion, we need support

with a “magic toehold”
Ø Lock primitives themselves have critical sections to test

and/or set the lock flags.
• Safe mutual exclusion on multicore systems requires

some hardware support: atomic instructions
Ø Examples: test-and-set, compare-and-swap, fetch-and-

add.
• Perform an atomic read-modify-write of a memory

location
• Expensive but necessary

Ø If we have any of those atomic instructions, we can build
higher-level synchronization objects.

Oct 29, 2018 Sprenkle - CSCI330 22
Takeaway: Mutexes are often implemented using hardware

12

“Test and Set” Instruction

• Retrieve a value from memory and set the value

at that location to 1; return the original value

• Atomic exchange

Ø Simultaneously test old value (returned) and set a

new value

• C Pseudocode:

int test_and_set(int *addr) {
int result = *addr;
*addr = 1;
return result;

}
Oct 29, 2018 Sprenkle - CSCI330 23

Implementing Locks with test_and_set

Lock::Acquire(){
while
(test_and_set(mutex)==1)

;
}

Lock::Release(){
mutex = 0;

}

• If lock is free (value==0),
test_and_set reads 0, sets
value to 1, and returns 0.
Ø Lock is now locked
Ø while condition is false,

Acquire is complete
• If lock is busy (value==1),

test_and_set reads 1, sets
value to 1, and returns 1.
Ø while continues to loop

until a Release executes

mutex = 0; // 0à free, 1à locked

Oct 29, 2018 Sprenkle - CSCI330 25

Evaluate this implementation

13

Evaluating Spin Lock
• Provides mutual exclusion
• There is low latency to

acquire the lock
Ø If it becomes free, waiting

thread gets it as soon as it is
scheduled again

• No fairness guarantees
• Occupies CPU by

performing busy waiting or
spinning
Ø Okay if critical section is

much shorter than the
scheduling quantum

• What happens if threads
have different priorities?
Ø If the thread waiting for the

lock has higher priority than
the thread using the lock?

Ø Called the priority inversion
problem
• Possible whenever there is a

busy wait

Less Spinning Solution

Lock::Acquire(){
while (test_and_set(mutex)==1)

yield();
}

Lock::Release(){
mutex = 0;

}

mutex = 0; // 0à free, 1à locked

Oct 29, 2018 Sprenkle - CSCI330 27

Evaluate this implementation

Voluntarily give up CPU

14

Less Spinning Solution

Lock::Acquire(){
while (test_and_set(mutex)==1)

yield();
}

Lock::Release(){
mutex = 0;

}

mutex = 0; // 0à free, 1à locked

Oct 29, 2018 Sprenkle - CSCI330 28

Evaluate this implementation

Voluntarily give up CPU

• Less busy waiting
• But, still no guarantees

about fairness, starvation

Locking with blocking

running

readyblocked

sleep

STOP wait

wakeup

dispatch

If thread T attempts to acquire a lock that is busy (held),
T must spin and/or block (sleep) until the lock is free.
By sleeping, T frees up the core for some other use.
Just sitting and spinning is wasteful.

H is the lock holder when
T attempts to acquire the
lock.

yield
preempt

A A

R

R

H T

Oct 29, 2018 Sprenkle - CSCI330 29

15

OS Support for Blocking

Oct 29, 2018 Sprenkle - CSCI330 30

kernel TCB

active
ready or
running

blocked

wait

sleep
wait

wakeup
signal

When a thread is blocked on
a synchronization object,

its TCB is placed on a
sleep queue of threads

waiting for an
event on that object.

Applies to the process abstraction too,
or, more precisely, to the main thread of a process.

sleep queue ready queue

Locking with blocking

running

readyblocked

sleep

STOP wait

wakeup

dispatch

T calls acquire and enters the kernel (via syscall) to
block because H has the lock.
T sleeps in the kernel to wait for the contended lock.
When the lock holder H releases, H enters the kernel
(via syscall) to wakeup a waiting thread (e.g., T).

H can block too,
perhaps for some
other resource.
H doesn’t implicitly
release the lock just
because it blocks.

yield
preempt

A A

R

R

H T

Oct 29, 2018 Sprenkle - CSCI330 31

16

OS Support for Blocking

Oct 29, 2018 Sprenkle - CSCI330 32

kernel TCB

active
ready or
running

blocked

wait

sleep
wait

wakeup
signal

When a thread is blocked on
a synchronization object,

its TCB is placed on a
sleep queue of threads

waiting for an
event on that object.

Applies to the process abstraction too,
or, more precisely, to the main thread of a process.

sleep queue ready queue

Evaluate this approach

Spinlocks vs Blocking/Queuing Locks
• Spinlocks

Ø Useful in kernel for shared
data structures (e.g.,
ready queue)

• Block/Queueing Locks
Ø Can be more efficient for

those waiting for acquire
• Added on a queue in kernel

mode
• But, not busy waiting and

consuming resources

Ø Can prevent starvation

Oct 29, 2018 Sprenkle - CSCI330 33

17

Looking Ahead
• Project 3 due Friday

Oct 29, 2018 Sprenkle - CSCI330 34

