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Today
• Synchronization

Ø Implementing Locks
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Review
• What are these in the context of 

synchronization?
Ø Liveness/Progress
Ø Safety/Mutual Exclusion

• What is a Lock?
ØWhy use locks?
ØWhat is its API?  What do those method calls do?
ØWhat are the rules of Locks?

• Why is debugging concurrency/non-determinism 
difficult?
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Review: Terminology
• Safety/Mutual Exclusion: only one thread in the 

critical section
• Liveness/Progress: if no threads are executing a 

critical section and a thread wishes to enter a 
critical section, that thread must be guaranteed 
to eventually enter the critical section

• Lock: synchronization mechanism to prevent 
concurrent access (mutual exclusion)
ØAlso called mutex or mutex lock
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Review: Locks

•Acquire
Øwait until lock is free, then take it

•Release
Ø release lock, waking up anyone waiting for it

1. At most one lock holder at a time (safety)

2. If no one holding, acquire gets lock (progress)

3. If all lock holders finish and no higher priority 

waiters, waiter eventually gets lock (progress)
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Review: A Lock or Mutex
• Locks enforce mutual exclusion in 

conflicting critical sections
• API methods: Acquire and Release

ØAlso called Lock and Unlock
ØCall Acquire upon entering a critical 

section
ØCall Release upon leaving a critical section

• Between Acquire/Release, the thread 
holds the lock

• Acquire does not return until any 
previous holder releases

Oct 29, 2018 Sprenkle - CSCI330 5

A A

R

R

Review: Rules for Using Locks
• Lock is initially free
• Always acquire lock before accessing shared 

data structure
Ø Likely: Beginning of procedure

• Always release after finished with shared data
Ø Likely: End of procedure
ØOnly the lock holder can release

• Never access shared data without lock
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Review: Debugging non-determinism
• Requires worst-case reasoning

Ø Eliminate all ways for program to break
• Debugging is hard

Ø Can’t test all possible 
interleavings

Ø Bugs may only happen 
sometimes

• Heisenbug
Ø Re-running program 

may make the bug 
disappear

Ø Doesn’t mean it isn’t still there!
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IMPLEMENTING LOCKS
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Lock Goals
• What are our goals for locks?

Ø That will help us to figure out how to implement 
them

• Consider a lock 
Ø For a highly contended resource
ØOn a resource-strapped system
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Lock Goals
• Must enforce mutual exclusion
• Reasonable fairness (liveness)

ØDoes each thread contending for the lock get a fair 
shot at acquiring it once it is free? 

ØDoes any thread contending for the lock starve while 
doing so, thus never obtaining it?

• Reasonable performance
ØOverhead in using the lock
Ø Scenarios: one thread acquiring/releasing lock, 

multiple threads/single CPU, multiple 
threads/multiple CPUs

Oct 29, 2018 Sprenkle - CSCI330 10



6

Key Observations
• Why do we need mutual exclusion?

Ø The scheduler!
• On a uniprocessor, a operation is atomic if no 

context switch can occur in the middle of the 
operation

• So, how about mutual exclusion by preventing 
the context switch?

What causes context switches?
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Key Observations
• Why do we need mutual exclusion?

Ø The scheduler!
• On a uniprocessor, a operation is atomic if no 

context switch can occur in the middle of the 
operation
ØMutual exclusion by preventing the context switch

• Context switches occur because of
Ø Internal events: systems calls and exceptions
Ø External events: interrupts
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Disabling Interrupts
Assume: single processor system
• Tells the hardware to delay handling any 

external events until after the thread is finished 
modifying the critical section

• In some implementations, done by setting and 
unsetting the interrupt status bit
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Disabling Interrupts for Locks

Lock::Acquire() {
disable interrupts;

}

Lock::Release() {
enable interrupts;

}

Analyze the solution:
• Does it work?
• What are its strengths and weaknesses?
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Disabling Interrupts for Locks

Lock::Acquire() {
disable interrupts;

}

Lock::Release() {
enable interrupts;

}

• Once interrupts are disabled, thread can’t be stopped
• Critical section can be very long
• Can’t wait too long to respond to interrupts à may 

be lost/missed
• Any program can call lock methods.  So…
• Only works for single processor

Works in that it enforces mutual exclusion but … 
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Disabling Interrupts: Simple Solution

Lock::Acquire(){
disable interrupts;

while(value == BUSY){

enable interrupts;

disable interrupts;

}

value = BUSY;

enable interrupts;

}

Lock::Release(){
disable interrupts;

value = FREE;

enable interrupts;

}

Idea: Shorten the length of the critical section.
But then …?
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Larger Question: Is this a good idea?

• Should user processes be able to disable interrupts?

Ø No.  

• What happens on multiprocessors?

Ø Disabling interrupts affects only the CPU on which the 

thread is executing

• Threads on other CPUs can enter the critical section!

Ø Or, need to disable interrupts on all CPUs – expensive!

• On a uniprocessor, the OS may use this technique 

when it is updating kernel data structures
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What are we trying to do?
• Ensure mutual exclusion, liveness, fairness, etc.
• But, practically?

Ø See if another thread is executing the section (read a 
variable)

Ø If it isn’t, grab the lock (modify and write a variable)
Ø If it is, wait
ØAtomically
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Proposed Lock Implementation
avail = 0;

acquire() {
while (avail == 1)

{;}
ASSERT (avail == 0);
avail = 1;

}

release() {
ASSERT(avail == 1);
avail = 0;

}

Busy-wait until lock is free.

Global lock variable
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ASSERT: if expression evaluates to 0, 
Display error message and abort program

Spinlock: a First Try
avail = 0;

acquire() {
while (avail == 1)

{;}
ASSERT (avail == 0);
avail = 1;

}

release() {
ASSERT(avail == 1);
avail = 0;

}

Busy-wait until lock is free.

Global spinlock variable

Spinlocks provide mutual exclusion 
among cores without blocking
à don’t need to context switch

Spinlocks are useful for lightly 
contended critical sections
where there is no risk that a thread is 
preempted while it is holding the lock
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ASSERT: if expression evaluates to 0, 
Display error message and abort program
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Spinlock: What Went Wrong
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avail = 0;

acquire() {
while (avail == 1)

{;}
ASSERT (avail == 0);
avail = 1;

}

release() {
ASSERT(avail == 1);
avail = 0;

}

Race to acquire
Two (or more) cores may see 
avail == 0.

How do we fix this problem?

Hardware Support
• To implement mutual exclusion, we need support 

with a “magic toehold” 
Ø Lock primitives themselves have critical sections to test 

and/or set the lock flags.
• Safe mutual exclusion on multicore systems requires 

some hardware support: atomic instructions
Ø Examples: test-and-set, compare-and-swap, fetch-and-

add.
• Perform an atomic read-modify-write of a memory 

location
• Expensive but necessary

Ø If we have any of those atomic instructions, we can build 
higher-level synchronization objects.
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“Test and Set” Instruction

• Retrieve a value from memory and set the value 

at that location to 1; return the original value

• Atomic exchange

Ø Simultaneously test old value (returned) and set  a 

new value 

• C Pseudocode:

int test_and_set(int *addr) {
int result = *addr;
*addr = 1;
return result;

}
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Implementing Locks with test_and_set

Lock::Acquire(){
while
(test_and_set(mutex)==1)

;
}

Lock::Release(){
mutex = 0;

}

• If lock is free (value==0), 
test_and_set reads 0, sets 
value to 1, and returns 0.
Ø Lock is now locked
Ø while condition is false, 

Acquire is complete
• If lock is busy (value==1), 

test_and_set reads 1, sets 
value to 1, and returns 1.  
Ø while continues to loop 

until a Release executes

mutex = 0; // 0à free, 1à locked
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Evaluate this implementation
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Evaluating Spin Lock
• Provides mutual exclusion 
• There is low latency to 

acquire the lock
Ø If it becomes free, waiting 

thread gets it as soon as it is 
scheduled again

• No fairness guarantees
• Occupies CPU by 

performing busy waiting or 
spinning
Ø Okay if critical section is 

much shorter than the 
scheduling quantum

• What happens if threads 
have different priorities?
Ø If the thread waiting for the 

lock has higher priority than 
the thread using the lock?

Ø Called the priority inversion
problem 
• Possible whenever there is a 

busy wait

Less Spinning Solution

Lock::Acquire(){
while (test_and_set(mutex)==1)

yield();
}

Lock::Release(){
mutex = 0;

}

mutex = 0; // 0à free, 1à locked
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Evaluate this implementation

Voluntarily give up CPU
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Less Spinning Solution

Lock::Acquire(){
while (test_and_set(mutex)==1)

yield();
}

Lock::Release(){
mutex = 0;

}

mutex = 0; // 0à free, 1à locked
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Evaluate this implementation

Voluntarily give up CPU

• Less busy waiting
• But, still no guarantees 

about fairness, starvation

Locking with blocking

running

readyblocked

sleep

STOP wait

wakeup

dispatch

If thread T attempts to acquire a lock that is busy (held),  
T must spin and/or block (sleep) until the lock is free.  
By sleeping, T frees up the core for some other use.  
Just sitting and spinning is wasteful.

H is the lock holder when 
T attempts to acquire the 
lock.   

yield
preempt

A A

R

R

H T
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OS Support for Blocking
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kernel TCB

active 
ready or
running

blocked

wait

sleep
wait

wakeup
signal

When a thread is blocked on 
a synchronization object, 

its TCB is placed on a 
sleep queue of threads 

waiting for an 
event on that object. 

Applies to the process abstraction too, 
or, more precisely, to the main thread of a process.

sleep queue ready queue

Locking with blocking

running

readyblocked

sleep

STOP wait

wakeup

dispatch

T calls acquire and enters the kernel (via syscall) to 
block because H has the lock.
T sleeps in the kernel to wait for the contended lock. 
When the lock holder H releases, H enters the kernel 
(via syscall) to wakeup a waiting thread (e.g., T).

H can block too, 
perhaps for some 
other resource.
H doesn’t implicitly 
release the lock just 
because it blocks.

yield
preempt

A A

R

R

H T
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OS Support for Blocking
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kernel TCB

active 
ready or
running

blocked

wait

sleep
wait

wakeup
signal

When a thread is blocked on 
a synchronization object, 

its TCB is placed on a 
sleep queue of threads 

waiting for an 
event on that object. 

Applies to the process abstraction too, 
or, more precisely, to the main thread of a process.

sleep queue ready queue

Evaluate this approach

Spinlocks vs Blocking/Queuing Locks
• Spinlocks

Ø Useful in kernel for shared 
data structures (e.g., 
ready queue)

• Block/Queueing Locks
Ø Can be more efficient for 

those waiting for acquire
• Added on a queue in kernel 

mode 
• But, not busy waiting and 

consuming resources

Ø Can prevent starvation
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Looking Ahead
• Project 3 due Friday
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