
1

Today
• Synchronization Problem: Taking turns
• Synchronization Mechanisms

ØCondition Variables
Ø Semaphores

Oct 31, 2018 Sprenkle - CSCI330 1

Project 3 Development Recommendation

• At least after every step, git commit and push 
your code

• VM issues à don’t lose (as much of) your owrk

Oct 31, 2018 Sprenkle - CSCI330 2



2

Review
• Why do we need locks?
• What are 3 different ways to implement locks?

ØHow do we evaluate implementations?
ØWhat are the implementations’ tradeoffs?
ØWhat did we need to be able to implement them?

Oct 31, 2018 Sprenkle - CSCI330 3

Review: Evaluating Lock Implementations

• Mutual Exclusion
• Performance
• Fairness

Oct 31, 2018 Sprenkle - CSCI330 4



3

Review: Implementing Locks Summary

• Disabling Interrupts

Ø Not practical on multiprocessor systems

• Spin Locks

Ø Need: hardware support – atomic RMW operation 

Ø Useful for locks on short critical sections, won’t be 

preempted/blocked (e.g., in kernel)

• Good in with multiple processors; context switch may be more 

expensive than burning CPU in busy/wait

Ø No fairness guarantees

• Blocking/Queueing Locks

Ø Need: hardware support – atomic RMW operation

Ø Need: OS Support – maintaining waiting queue ßoverhead

Ø Less unproductive use of CPU; closer to fairness

Oct 31, 2018 Sprenkle - CSCI330 5

Why do we need a
RMW operation?

kernel waiting 
queue may be locked 

with a spin lock 

Review: Hardware Support
• To implement mutual exclusion, we need support 

with a “magic toehold” 
Ø Lock primitives themselves have critical sections to test 

and/or set the lock flags.
• Safe mutual exclusion on multicore systems requires 

some hardware support: atomic instructions
Ø Examples: test-and-set, compare-and-swap, fetch-and-

add.
• Perform an atomic read-modify-write of a memory 

location
• Expensive but necessary

Ø If we have any of those atomic instructions, we can build 
higher-level synchronization objects.

Oct 31, 2018 Sprenkle - CSCI330 6



4

Review: Locking with blocking

running

readyblocked

sleep

STOP wait

wakeup

dispatch

T calls acquire and enters the kernel (via syscall) to 
block because H has the lock.
T sleeps in the kernel to wait for the contended lock. 
When the lock holder H releases, H enters the kernel 
(via syscall) to wakeup a waiting thread (e.g., T).

H can block too, 
perhaps for some 
other resource.
H doesn’t implicitly 
release the lock just 
because it blocks.

yield
preempt

A A

R

R

H T

Oct 31, 2018 Sprenkle - CSCI330 7

Lock Implementation Concerns
• What happens if thread dies while holding the 

lock?
• Priority Inversion Problem

ØA lower priority thread holds the [spin] lock and 
keeps getting preempted because a higher-priority 
thread wants the lock

• Even with lock queues, no guarantee that the 
first waiting thread will get the lock

Oct 31, 2018 Sprenkle - CSCI330 8

We may return to these issues later…



5

PING PONG

Oct 31, 2018 Sprenkle - CSCI330 9

New Problem: Ping Pong

void PingPong() {
while(not done) {

…
if (blue)

switch to purple;
else if (purple)

switch to blue;
}

} How would we implement using locks?

Oct 31, 2018 Sprenkle - CSCI330 10

Alternate threads working, in pseudocode:

Note that, at the program level, 
we cannot say which thread to switch to



6

Ping Pong with Mutexes?

void PingPong() {
while(not done) {

mx->Acquire();
…
mx->Release();

}
}

Oct 31, 2018 Sprenkle - CSCI330 13

This solution doesn’t work.
Why?

Mutexes Don’t Work for Ping Pong

Oct 31, 2018 Sprenkle - CSCI330 14

Mutexes can’t ensure 
alternating between 
the threads.

Ex: Blue could take 
two turns before 
Purple gets a turn.



7

Waiting for Conditions
• Need more general synchronization primitives
• Need some way for a thread to sleep until some other thread 

wakes it up
Ø Enables explicit signaling over any kind of condition
Ø e.g., changes in the program state or state of a shared resource.

• Ideally, threads don’t have to know about each other explicitly.  
They should be able to coordinate around shared objects

running

readyblocked

T1 sleeps

T2 wakes up T1

Scheduler: dispatch/preempt T1

Thread T1’s 
states and transitions

Oct 31, 2018 Sprenkle - CSCI330 15

Condition Variables

• Condition variable (CV): Data structure that 

allows thread to check if some condition is true 

before continuing execution 

ØAllows waiting inside a critical section

• Condition Variable API

Ø wait: block until condition becomes true

Ø signal: signal that the condition is true

• also called notify
• Wake up one waiting thread

ØMay also define a broadcast (notifyAll)

• Signal all waiting threads

Oct 31, 2018 Sprenkle - CSCI330 16



8

Condition Variables’ Mutex
• Every CV is bound to exactly one mutex, which is 

necessary for safe use of the CV
Ø The mutex protects shared state associated with the 

condition
ØMutex is locked when wait() is called

(A mutex may have any # of CVs bound to it.)

Oct 31, 2018 Sprenkle - CSCI330 17

Condition Variable Operations
wait ( lock ) {
release lock
put thread on wait queue
go to sleep
// after wake up
acquire lock

}

signal () {
wakeup one waiter (if any)

}

broadcast () {
wakeup all waiters (if any)

}

Atomic

Atomic

Atomic

Lock always 
held

Lock usually 
held

Lock usually 
held

Lock always 
held

Oct 31, 2018 Sprenkle - CSCI330 18



9

Ping Pong using a Condition Variable

void
PingPong() {

mx.acquire();
while(not done) {

while(turn != 
purple)

cv.wait(mx);
do stuff;
turn = blue;
cv.signal();

}
mx.release();

}
Oct 31, 2018 Sprenkle - CSCI330 19

wait (lock){
release lock
put thread on wait queue
go to sleep
// after wake up
acquire lock

}
signal (){
wakeup one waiter (if any)

}

turn = purple; cv = new ConditionVariable();
mx = new Lock();

Blue’s code is similar, with change to turn.

Ping Pong using a Condition Variable

void
PingPong() {

mx.acquire();
while(not done) {

while(turn != 
purple)

cv.wait(mx);
do stuff;
turn = blue;
cv.signal();

}
mx.release();

}
Oct 31, 2018 Sprenkle - CSCI330 20

wait (lock){
release lock
put thread on wait queue
go to sleep
// after wake up
acquire lock

}
signal (){
wakeup one waiter (if any)

}
If blue calls cv.signal(), purple 

doesn’t immediately run.  Why?

turn = purple; cv = new ConditionVariable();
mx = new Lock();



10

Waiting for Conditions
• Use condition variables (CVs) to represent any condition in 

your program
Ø Queue empty, buffer full, op complete, resource ready…

• Associate the condition variable with the mutex that protects 
the state relating to that condition.
Ø CVs are not variables. But you can associate them with whatever 

data you want, i.e, the state protected by its mutex.
• A caller of CV wait must hold its mutex

Ø Crucial: a waiter waits on a logical condition and knows that it 
won’t change until the waiter is safely asleep.

Ø Otherwise, due to nondeterminism, another thread could change 
the condition and signal before the waiter is asleep.
• The waiter would sleep forever: the missed wakeup or wake-up 

waiter problem.
• wait atomically releases the mutex to sleep, and reacquires it 

before returning.
Oct 31, 2018 Sprenkle - CSCI330 21

SEMAPHORE
Another synchronization mechanism

Oct 31, 2018 Sprenkle - CSCI330 22



11

Semaphore
• A semaphore is a hidden atomic integer counter 

with only increment/up (V) and decrement/down 
(P) operations.
Ø Book calls V signal and P wait

• Decrement blocks iff the count is zero.
• Semaphores handle all of your synchronization 

needs with one elegant but confusing abstraction.
V: Up

P: Downint sem

wait
if (sem == 0) then until a V

Oct 31, 2018 Sprenkle - CSCI330 23

Semaphore - Flag Signals

Oct 31, 2018 Sprenkle - CSCI330 24



12

Example: Binary Semaphore
• A binary semaphore takes only values 0 and 1.
• Requires a usage constraint: 

the set of threads using the semaphore 
call P and V in strict alternation.
ØNever two Vs in a row.

1 0

P-Down

V-Up

wait

P-Down

wakeup on V

Oct 31, 2018 Sprenkle - CSCI330 25
Typical initialization: 
Semaphore s = new Semaphore(1);

A Mutex is a Binary Semaphore

Oct 31, 2018 Sprenkle - CSCI330 26

1 0

P-Down

V-Up

wait

P-Down

wakeup on V

V

P
P V

Once a thread A completes its P, 
no other thread can P
until A does a matching V. 

A mutex is a binary semaphore with an initial value of 1, 
for which each thread calls P-V in strict pairs. 



13

Semaphores vs. Mutex
• A binary semaphore is similar to a mutex, but …

Oct 31, 2018 Sprenkle - CSCI330 27

Semaphores vs. Mutex
• A binary semaphore is similar to a mutex, but …
• Mutex has an owner

ØOnly the owner can acquire/release the lock
• Semaphores: anyone could release the lock

Oct 31, 2018 Sprenkle - CSCI330 28



14

Semaphores vs. Condition Variables
• Semaphores are “prefab CVs” with an atomic 

integer.

• V(Up) differs from signal (notify) in that …?

• P(Down) differs from wait in that …?

Oct 31, 2018 Sprenkle - CSCI330 29

Semaphores vs. Condition Variables

• Semaphores are “prefab CVs” with an atomic integer.

• V(Up) differs from signal (notify) in that:

Ø Signal has no effect if no thread is waiting on the condition.

• Condition variables are not variables!  They have no value!

Ø Up has the same effect whether or not a thread is waiting.

• Semaphores retain a “memory” of calls to Up.

• P(Down) differs from wait in that:

Ø Down checks the condition and blocks only if necessary.

• No need to recheck the condition after returning from Down.

• The wait condition is defined internally, but is limited to a 
counter.

Ø Wait is explicit: it does not check the condition itself, ever.

• Condition is defined externally and protected by integrated 
mutex.

Oct 31, 2018 Sprenkle - CSCI330 30



15

Ping Pong with Semaphores

Oct 31, 2018 Sprenkle - CSCI330 31

How would we implement Ping Pong with Semaphores?

Ping Pong with Semaphores

Oct 31, 2018 Sprenkle - CSCI330 32

void
PingPong() {

while(not done) {
blue.P();
Compute();
purple.V();

}
}

void
PingPong() {

while(not done) {
purple.P();
Compute();
blue.V();   

}
}

blue = Sempahore(0);
purple = Semaphore(1);



16

Ping Pong with Semaphores

Oct 31, 2018 Sprenkle - CSCI330 33

P

V

P V

P

01

P V

V

Compute

Compute

Compute

The threads compute in strict alternation.

Ping Pong with Semaphores

Oct 31, 2018 Sprenkle - CSCI330 34

void
PingPong() {

while(not done) {
blue.P();
Compute();
purple.V();

}
}

void
PingPong() {

while(not done) {
purple.P();
Compute();
blue.V();   

}
}

blue = Sempahore(0);
purple = Semaphore(1);



17

Looking Ahead
• Project 3 due on Friday!
• Synchronization

Ø In Java
ØClassic problems

Oct 31, 2018 Sprenkle - CSCI330 35


