Today

® Synchronization Problem: Taking turns
® Synchronization Mechanisms

Condition Variables
Semaphores

Oct 31, 2018 Sprenkle - CSCI330

Project 3 Development Recommendation

® At |least after every step, git commit and push
your code

® \/M issues = don’t lose (as much of) your owrk

Oct 31, 2018 Sprenkle - CSCI330

Review

® Why do we need locks?

® What are 3 different ways to implement locks?
How do we evaluate implementations?
What are the implementations’ tradeoffs?
What did we need to be able to implement them?

Oct 31, 2018 Sprenkle - CSCI330 3

Review: Evaluating Lock Implementations

® Mutual Exclusion
® Performance
® Fairness

Oct 31, 2018 Sprenkle - CSCI330 4

Review: Implementing Locks Summary

® Disabling Interrupts

Not practical on multiprocessor systems | Why do we need a
® Spin Locks RMW operation?

Need: hardware support —atomic RMW operation

Useful for locks on short critical sections, won’t be
preempted/blocked (e.g., in kernel)

® Good in with multiple processors; context switch may be more
expensive than burning CPU in busy/wait
kernel waiting

No fairness guarantees queue may be locked
¢ Blocking/Queueing Locks with a spin lock

Need: hardware support —atomic RMW operation

Need: OS Support — maintaining waiting queue € overhead

Less unproductive use of CPU; closer to fairness

Oct 31, 2018 Sprenkle - CSCI330 5

Review: Hardware Support

® To implement mutual exclusion, we need support
with a “magic toehold”
Lock primitives themselves have critical sections to test
and/or set the lock flags.
® Safe mutual exclusion on multicore systems requires
some hardware support: atomic instructions

Examples: test-and-set, compare-and-swap, fetch-and-
add.

® Perform an atomic read-modify-write of a memory
location

® Expensive but necessary

If we have any of those atomic instructions, we can build
higher-level synchronization objects.

Oct 31, 2018 Sprenkle - CSCI330 6

Review: Locking with blocking -

T calls acquire and enters the kernel (via syscall) to 00
block because H has the lock.

T sleeps in the kernel to wait for the contended lock. Al l A
When the lock holder H releases, H enters the kernel 1 HEN
(via syscall) to wakeup a waiting thread (e.g., T). R

yield

preempt H can block too, <:|
perhaps for some

dispatch other resource.

H doesn’t implicitly

release the lock just

because it blocks.

sleep

wakeupg

Sprenkle - CSCI330 7

Lock Implementation Concerns

® What happens if thread dies while holding the
lock?
® Priority Inversion Problem

A lower priority thread holds the [spin] lock and
keeps getting preempted because a higher-priority
thread wants the lock

® Even with lock queues, no guarantee that the
first waiting thread will get the lock

We may return to these issues later-...

Oct 31, 2018 Sprenkle - CSCI330 8

PING PONG

Oct 31, 2018 Sprenkle - CSCI330 9

New Problem: Ping Pong

Alternate threads working, in pseudocode:

void PingPong() { Q D

while(not done) {

if (blue)
switch to purple;
else if (purple)
switch to blue;

How would we implement using locks?

Note that, at the program level,
we cannot say which thread to switch to

Oct 31, 2018 Sprenkle - CSCI330 10

Ping Pong with Mutexes?

void PingPong() {
while(rnot done) { 0 0

mx->Acquire();

Hx->Re1ease();

1 } This solution doesn’t work.
Why?

Oct 31, 2018 Sprenkle - CSCI330 13

Mutexes Don’t Work for Ping Pong

Mutexes can’t ensure

alternating between

. . . the threads.
Ex: Blue could take
. . . two turns before

Purple gets a turn.

Oct 31, 2018 Sprenkle - CSCI330 14

Waiting for Conditions

® Need more general synchronization primitives
* Need some way for a thread to sleep until some other thread
wakes it up
Enables explicit signaling over any kind of condition
e.g., changes in the program state or state of a shared resource.

¢ |deally, threads don’t have to know about each other explicitly.
They should be able to coordinate around shared objects

Thread T1's
states and transitions

T1 sleeps Scheduler: dispatch/preempt T1

]
T2 wakesup T1

Oct 31, 2018 Sprenkle - CSCI330 15

Condition Variables

® Condition variable (CV): Data structure that
allows thread to check if some condition is true
before continuing execution
Allows waiting inside a critical section
® Condition Variable API
wait: block until condition becomes true

signal: signal that the condition is true
® also called notify
® Wake up one waiting thread

May also define a broadcast (notifyAll)
® Signal all waiting threads

Oct 31, 2018 Sprenkle - CSCI330 16

Condition Variables’ Mutex

® Every CV is bound to exactly one mutex, which is
necessary for safe use of the CV

The mutex protects shared state associated with the
condition

Mutex is locked when wait() is called

(A mutex may have any # of CVs bound to it.)

Oct 31, 2018 Sprenkle - CSCI330 17

Condition Variable Operations

put thread on wait queue
go to sleep
// after wake up

Lock always acquire lock
held }

Lock always wait (lock) {
held release lock
Atomic

signal) {

Lock “SL:]Z'IZ ‘ wakeup one waiter (if any) Atomic
ks
broadcast () {

Lock “SL:]Z'I'Z‘ wakeup all waiters (if any)} Atomic
ks

Oct 31, 2018 Sprenkle - CSCI330 18

Ping Pong using a Condition Variable
turn = purple; cv = new ConditionVariable();
mx = new Lock();

1d
PingPong() { 00

mx.acquire(); wait (lock){
while(rnot done) { release lock
while(Cturn != put thread on wait queue
purple) go to sleep
cv.wait(mx); // after wake up

acquire lock

do stuff; }
turn = blue; signal Of

3 cv.signalQ; wakeup one waiter (if any)
}

mx.release();

oct31,2018 Blue’s code is similar, with change to turn. 19

Ping Pong using a Condition Variable
turn = purple; cv = new ConditionVariable();
mx = new Lock();

id
\l;(s:]gPong() { 0 D

mx.acquire(); wait (lock){
while(Cnot done) { release lock
while(turn != put thread on wait queue
purple) go to sleep
cv.wait(mx); // after wake up

acquire lock

do stuff; }
turn = blue; signal Of

1 cv.51gnal(); wakeup one waiter (if any)
ks

mx.rele

If blue calls cv.signal(), purple
Oct 31,2018 doesn’t immediately run. Why? 20

Waiting for Conditions

® Use condition variables (CVs) to represent any condition in
your program
Queue empty, buffer full, op complete, resource ready...
® Associate the condition variable with the mutex that protects
the state relating to that condition.
CVs are not variables. But you can associate them with whatever
data you want, i.e, the state protected by its mutex.
e A caller of CVwait must hold its mutex

Crucial: a waiter waits on a logical condition and knows that it
won’t change until the waiter is safely asleep.
Otherwise, due to nondeterminism, another thread could change
the condition and signal before the waiter is asleep.
® The waiter would sleep forever: the missed wakeup or wake-up
waiter problem.
® wait atomically releases the mutex to sleep, and reacquires it
before returning.

Oct 31, 2018 Sprenkle - CSCI330 21

Another synchronization mechanism

SEMAPHORE

Oct 31, 2018 Sprenkle - CSCI330 22

10

Semaphore

® A semaphore is a hidden atomic integer counter

with only increment/up (V) and decrement/down
(P) operations.

Book calls V signal and Pwait
® Decrement blocks iff the count is zero.

® Semaphores handle all of your synchronization
needs with one elegant but confusing abstraction.

V: Up]
1 P: Down 1

[]
if (sem == 0) theuntil aVv '%

Oct 31, 2018 Sprenkle - CSCI330 23

Semaphore - Flag Signals

a1

A B

ha a
el Ve e e

P

N
—, N Wi\ ~ K

S T U w
\o ° [

[R N

Y :\ SPACE

11

Example: Binary Semaphore

® A binary semaphore takes only values 0 and 1.

® Requires a usage constraint:
the set of threads using the semaphore
call P and V in strict alternation.

Never two Vs in a row.

P-Down P-Down

V-Up

wakeup on V

Typical initialization:
Oct 31,2018 st Semaphore s = new Semaphore(l);

A Mutex is a Binary Semaphore

A mutex is a binary semaphore with an initial value of 1,
for which each thread calls P-V in strict pairs.
Once a thread A completes its P,
no other thread can P
until A does a matching V.

wakeup on V

Oct 31, 2018 Sprenkle - CSCI330 26

12

Semaphores vs. Mutex

® A binary semaphore is similar to a mutex, but ...

Oct 31, 2018 Sprenkle - CSCI330 27

Semaphores vs. Mutex

® A binary semaphore is similar to a mutex, but ...
® Mutex has an owner
Only the owner can acquire/release the lock

® Semaphores: anyone could release the lock

Oct 31, 2018 Sprenkle - CSCI330 28

13

Semaphores vs. Condition Variables

® Semaphores are “prefab CVs” with an atomic
integer.

® V/(Up) differs from signal (notify) in that ...?

® P(Down) differs from wait in that ...?

Oct 31, 2018 Sprenkle - CSCI330 29

Semaphores vs. Condition Variables

® Semaphores are “prefab CVs” with an atomic integer.
e \/(Up) differs from signal (notify) in that:
Signal has no effect if no thread is waiting on the condition.
® Condition variables are not variables! They have no value!
Up has the same effect whether or not a thread is waiting.
® Semaphores retain a “memory” of calls to Up.
e P(Down) differs from wait in that:
Down checks the condition and blocks only if necessary.

® No need to recheck the condition after returning from Down.

® The wait condition is defined internally, but is limited to a
counter.

Wait is explicit: it does not check the condition itself, ever.

® Condition is defined externally and protected by integrated
mutex.

Oct 31, 2018 Sprenkle - CSCI330 30

14

Ping Pong with Semaphores

How would we implement Ping Pong with Semaphores?

Oct 31, 2018 Sprenkle - CSCI330 31

Ping Pong with Semaphores

blue = Sempahore(0);
purple = Semaphore(l)

void
PingPong() { u
while(Cnot done) {
blue.PQ);
Compute();

purple NQ);

void
PingPong() { 0
while(Cnot done) {
purple.PQ);
Compute();
blue NQ;

Oct 31, 2018 Sprenkle - CSCI330 32

15

Ping Pong with Semaphores

The threads compute in strict alternation.

v i
P i
Computg
v
Computg
P
01 ComputqI
P \'} P \")

Oct 31, 2018 Sprenkle - CSCI330 33

Ping Pong with Semaphores

blue = Sempahore(0);
purple = Semaphore(l)

void void
PingPong() { 6 PingPong() { 0
while(not done) { while(not done) {
blue.PQ; purple.P();
Compute(); Compute();
pur'ple'V(); } que.V(),’
} ¥

Oct 31, 2018 Sprenkle - CSCI330 34

16

Looking Ahead

® Project 3 due on Friday!
® Synchronization

In Java
Classic problems

Oct 31, 2018 Sprenkle - CSCI330

35

17

