
Today
• Synchronization in Java
• Classic Synchronization Problems

ØProducer-Consumer

Nov 2, 2018 Sprenkle - CSCI330 1

Review
• What two synchronization mechanisms did we

discuss?
ØWhat are their APIs?

• What problem did we solve with these
mechanisms that we could not solve with locks?

Nov 2, 2018 Sprenkle - CSCI330 2

Review: Condition Variables
• Condition variable (CV): Data structure that

allows thread to check if some condition is true
before continuing execution
ØAllows waiting inside a critical section

• Condition Variable API
Ø wait: block until condition becomes true
Ø signal: signal that the condition is true

• also called notify
• Wake up one waiting thread

ØMay also define a broadcast (notifyAll)
• Signal all waiting threads

Nov 2, 2018 Sprenkle - CSCI330 3

Condition Variable Operations
wait (lock) {

release lock
put thread on wait queue
go to sleep
// after wake up
acquire lock

}

signal () {
wakeup one waiter (if any)

}

broadcast () {
wakeup all waiters (if any)

}

Atomic

Atomic

Atomic

Lock always
held

Lock usually
held

Lock usually
held

Lock always
held

Nov 2, 2018 Sprenkle - CSCI330 4

Review: Semaphore

• A semaphore is a hidden atomic integer counter

with only increment/up (V) and decrement/down

(P) operations.

Ø Book calls V signal and P wait
• Decrement blocks iff the count is zero.

• Semaphores handle all of your synchronization

needs with one elegant but confusing abstraction.

V: Up
P: Downint sem

wait
if (sem == 0) then until a V

Nov 2, 2018 Sprenkle - CSCI330 5

Review: Ping Pong using a Condition Variable

void
PingPong() {

mx.acquire();
while(not done) {

while(!myTurn)
cv.wait(mx);

do stuff;
turn = blue;
cv.signal();

}
mx.release();

}
Nov 2, 2018 Sprenkle - CSCI330 6

wait (lock){
release lock
put thread on wait queue
go to sleep
// after wake up
acquire lock

}
signal (){

wakeup one waiter (if any)
}

turn = purple;

Blue’s code is similar, with change to turn.

Review: Ping Pong with Semaphores

Nov 2, 2018 Sprenkle - CSCI330 7

void
PingPong() {

while(not done) {
blue.P();
Compute();
purple.V();

}
}

void
PingPong() {

while(not done) {
purple.P();
Compute();
blue.V();

}
}

blue = Sempahore(0);
purple = Semaphore(1);

Review: Ping Pong with Semaphores

Nov 2, 2018 Sprenkle - CSCI330 8

P

V

P V

P

01

P V

V

Compute

Compute

Compute

The threads compute in strict alternation.

SYNCHRONIZING JAVA CODE

Nov 2, 2018 Sprenkle - CSCI330 9

Java Synchronization
• Monitors built in to every object, through

inheritance from Object class
ØMutual exclusion (locks)
ØCooperation (condition variable)
Ø Lock/critical sections with synchronized keyword

•java.util.concurrent classes
Ø Lock
ØCondition
Ø Semaphore

Nov 2, 2018 Sprenkle - CSCI330 10

Java Uses Mutexes and CVs

public class Object {
void notify(); /* signal */
void notifyAll(); /* broadcast */
void wait();
void wait(long timeout);

}
public class PingPong {

public synchronized void
pingPong() {
while(true) {

notify();
wait();

}
}

}

Every Java object has a mutex (“monitor”) and condition
variable (“CV”) built in. You don’t have to use it, but it’s there.

A thread must own an object’s monitor
(synchronized) to call wait/notify,
else the method raises an
IllegalMonitorStateException.

wait(timeout) waits until the timeout
elapses or another thread notifies.

Nov 2, 2018 Sprenkle - CSCI330 11

public synchronized void pingPong() {
while(true) {

// do something
notify();
wait();

}
}

Ping Pong Using a Condition Variable in Java

Nov 2, 2018 Sprenkle - CSCI330 12

Interchangeable lingo:
synchronized == mutex == lock
monitor == mutex+CV
notify == signal

Implicit acquire() of
this object’s lock to
start method

Implicit release() of this
object’s lock to end method

public synchronized void pingPong() {
while(true) {

// do something
notify();
wait();

}
}

Ping Pong Using a Condition Variable in Java

wait

notify
(signal)

waitnotify
(signal)

wait

notify
(signal)

Suppose blue gets
the mutex first:

its notify is a no-op.

waiting for signal

waiting for
signal

cannot acquire
mutex

cannot acquire
mutex

Nov 2, 2018 Sprenkle - CSCI330 13

public synchronized void pingPong() {
while(true) {

// do something
notify();
wait();

}
}

Ping Pong Using a Condition Variable in Java

Nov 2, 2018 Sprenkle - CSCI330 14

Requires that two threads
can execute this method

on the same object

PingPongLock.java

Java Synchronization

Nov 2, 2018 Sprenkle - CSCI330 15

public void pingPong() {
synchronized(someObject) {

while(true) {
// do something
notify();
wait();

}
}

}

Implicit acquire() of
someObject’s lock to
start block of code

Implicit release() of this
someObject’s lock to end block

someObject must be a shared variable

PingPong.java

Monitors and mutexes are “equivalent”
• Entry to a monitor (e.g., a Java synchronized block)

is equivalent to Acquire of an associated mutex.
Ø Lock on entry

• Exit of a monitor is equivalent to Release.
Ø Unlock on exit (or at least “return the key”…)

• Note: exit/release is implicit and automatic if the
thread exits synchronized code by a Java exception.
Ø Much less error-prone then explicit release
Ø Can’t “forget” to unlock / “return the key”.
Ø Language-integrated support is a plus for Java.

Nov 2, 2018 Sprenkle - CSCI330 17

Monitors and mutexes are “equivalent”
• Mutexes are more flexible because we can choose which

mutex controls a given piece of state.
Ø E.g., in Java we can use one object’s monitor to control access

to state in some other object.
Ø Perfectly legal! So “monitors” in Java are more properly

thought of as mutexes.
• Caution: this flexibility is also more dangerous!

Ø It violates modularity: can code “know” what locks are held by
the thread that is executing it?

Ø Nested locks may cause deadlock (later).
• Keep your locking scheme simple and local!

Ø Java ensures that each Acquire/Release pair (synchronized
block) is contained within a method, which is good practice.

Nov 2, 2018 Sprenkle - CSCI330 18

Java Synchronization
• Monitors built in to every object, through

inheritance from Object class
ØMutual exclusion (locks)
ØCooperation (condition variable)
Ø Lock/critical sections with synchronized keyword

•java.util.concurrent classes
Ø Lock
ØCondition
Ø Semaphore

Nov 2, 2018 Sprenkle - CSCI330 19

Lock
Returns Method Description
void lock() Acquires the lock.

Condition newCondition()
Returns a new Condition instance
that is bound to this Lock
instance.

void unlock()
Releases the lock.

Nov 2, 2018 Sprenkle - CSCI330 20

https://docs.oracle.com/javase/8/docs/api/java/util/
concurrent/locks/Lock.html

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/Lock.html

Condition API

Nov 2, 2018

https://docs.oracle.com/javase/8/docs/api/java/util/concu
rrent/locks/Condition.html

Sprenkle - CSCI330 21

Returns Method Description

void await() Causes the current thread to wait
until it is signalled or interrupted.

void signal() Wakes up one waiting thread.

void signalAll() Wakes up all waiting threads.

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/Condition.html

Semaphore API

Nov 2, 2018 Sprenkle - CSCI330 22

Returns Method Description

void acquire()
Acquires a permit from this
semaphore, blocking until one is
available, or the thread is
interrupted.

void release() Releases a permit, returning it to
the semaphore.

https://docs.oracle.com/javase/8/docs/api/java/util/co
ncurrent/Semaphore.html

Semaphore(int permits) –
Creates a Semaphore with the given number of permits and
nonfair fairness setting.

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Semaphore.html

CLASSIC PROBLEMS
Producer-Consumer

Nov 2, 2018 Sprenkle - CSCI330 23

Producer-Consumer Problem
• Have a producer thread creating the items
• Have a consumer thread consuming the items
• Common synchronization problem

Nov 2, 2018 Sprenkle - CSCI330 24

Producer Consumer3 5 4 92

in

outshared data buffer

One implementation: Circular buffer
out: first full position in the buffer
in: next free position in the buffer

Producer-Consumer Example:
Event/Request Queue

Incoming
event
queue

worker
loop

Handle one
event,

blocking as
necessary.

When handler
is complete,

return to
worker pool.

We can use a mutex to protect
a shared event queue.

“Lock it down.”

dispatch

• But how will worker threads
wait on an empty queue?

• How to wait for arrival of the
next event?

We need suitable primitives to
sleep (block) for a condition and
wakeup when the condition is
satisfied.

threads waiting for event

handler

handler

handler
Nov 2, 2018 Sprenkle - CSCI330 25

Producer-Consumer Example:
Event/Request Queue

Incoming
event
queue

worker
loop

Handle one
event,

blocking as
necessary.

When handler
is complete,

return to
worker pool.

We can synchronize an event
queue with a mutex/CV pair.
Protect the event queue data
structure itself with the mutex.

dispatch

threads waiting on CV

handler

handler

handler
Nov 2, 2018 Sprenkle - CSCI330 26

Workers wait on the CV for
next event if the event queue
is empty.
Signal the CV when a new
event arrives.

Producer-Consumer Problem
• Example: Soda machine

ØProducer adds a soda
ØConsumer removes a soda

producer () {

add one soda to machine

}

consumer () {

take a soda from machine

}

Nov 2, 2018 Sprenkle - CSCI330 27

Solving Producer-Consumer Problems
• What variables/shared state do we need?

• Where do we need mutual exclusion?
ØWhat is our critical section?
ØHow many locks do we need?

• What are our ordering constraints?

Nov 2, 2018 Sprenkle - CSCI330 28

Solving Producer-Consumer Problems
• What variables/shared state do we need?

Ø Soda machine buffer
ØNumber of sodas in machine (≤ maxSodas)

• Where do we need mutual exclusion?
ØOnly one thread can manipulate machine at a time
Ø1 lock to protect all shared state (sodaLock)

• What are our ordering constraints?
ØConsumer must wait if machine is empty (CV

hasSoda)
ØProducer must wait if machine is full (CV hasRoom)

Nov 2, 2018 Sprenkle - CSCI330 29

Producer-Consumer Psuedocode

producer () {

add one soda to machine

}

consumer () {

take a soda from machine

}

Nov 2, 2018 Sprenkle - CSCI330 30

Producer-Consumer Psuedocode

producer () {
lock
wait if full

add one soda to machine

notify (not empty)
unlock

}

consumer () {
lock
wait if empty

take a soda from machine

notify (not full)
unlock

}

Nov 2, 2018 Sprenkle - CSCI330 31

Producer-Consumer Code

producer () {
sodaLock.acquire()

while(numSodas==MaxSodas){
hasRoom.wait(sodaLock)

}

add one soda to machine

hasSoda.signal()

sodaLock.release()
}

consumer () {
sodaLock.acquire()

while (numSodas == 0) {
hasSoda.wait(sodaLock)

}

take a soda from machine

hasRoom.signal()

sodaLock.release()
}

MxCV1 MxCV2

CV1CV2

Nov 2, 2018 Sprenkle - CSCI330 32

>1 Resource, >1 Consumers

producer () {
sodaLock.acquire()

while(numSodas==maxSodas){
hasRoom.wait(sodaLock)

}

fill machine with soda

broadcast(hasSoda)

sodaLock.release()
}

consumer () {
sodaLock.acquire()

while (numSodas == 0) {
hasSoda.wait(sodaLock)

}

take a soda from machine

signal(hasRoom)

sodaLock.release()
}

The signal should be a broadcast
if the producer can produce more than one resource,
and there are multiple consumers.

Nov 2, 2018 Sprenkle - CSCI330 33

Broadcast vs signal
• Can I always use broadcast instead of signal?

Ø Yes, assuming threads recheck condition
ØAnd they should: “loop before you leap”!
ØAnother thread could get to the lock before wait

returns

• Why might I use signal instead?
Ø Efficiency -- May wakeup threads for no good reason

• Those threads will then be put back to sleep

Nov 2, 2018 Sprenkle - CSCI330 34

Condition Variable Design Pattern
methodThatWaits() {

lock.acquire();
// Read/write shared
// state

while (
testSharedState()) {
cv.wait(lock);

}

// Read/write shared
// state
lock.release();

}

methodThatSignals() {
lock.acquire();
// Read/write shared
// state

// If testSharedState is
// now true
cv.signal(lock);

// Read/write shared
// state
lock.release();

}

Nov 2, 2018 Sprenkle - CSCI330 35

Summary: Condition Variables
• Condition variable is memoryless

Ø If signal when no one is waiting, no op

• Wait atomically releases lock
ØWhat if wait, then release?
ØWhat if release, then wait?

Nov 2, 2018 Sprenkle - CSCI330 36

wait (lock){
release lock
put thread on wait queue
go to sleep
// after wake up
acquire lock

}

Atomic

Summary: Condition Variables
• When a thread is woken up from wait, it may not

run immediately
Ø Signal/broadcast puts thread on ready (not running)

list
ØWhen lock is released, anyone might acquire it

• Benefit: simplifies implementation
ØOf condition variables and locks
ØOf code that uses condition variables and locks

Nov 2, 2018 Sprenkle - CSCI330 37

Using Condition Variables
• Document the condition(s) associated with each

CV.
ØWhat are the waiters waiting for?
ØWhen can a waiter expect a signal?

• ALWAYS hold lock when calling wait, signal,
broadcast
ØCondition variable is sync FOR shared state
ØALWAYS hold lock when accessing shared state

Nov 2, 2018 Sprenkle - CSCI330 38

Using Condition Variables

• Wait MUST be in a loop – “Loop before you leap!”

while (needToWait()) {
condition.wait(lock);

}
Ø Another thread may beat you to the mutex.

Ø The signaler may be careless.

• Some thread packages have “spurious wakeups”:

2 threads woken up, though a single signal has taken place

Ø A single CV may have multiple conditions

Ø Signals on CVs do not stack!

• A signal will be lost if nobody is waiting: always check the

wait condition before calling wait.

Nov 2, 2018 Sprenkle - CSCI330 39

Looking Ahead
• Project 3 due today
• Synchronization Assignment

ØPart 1: Discussion/pseudocode
ØPart 2: implementation in Java

Nov 2, 2018 Sprenkle - CSCI330 40

