
1

Today
• Classic Synchronization

Problem:
Dining Philosophers

• Synchronization
Mechanisms - tradeoffs

Nov 7, 2018 Sprenkle - CSCI330 1

Review
• We looked at the producer-consumer problem at

length
ØWhat were our two solutions?

• One with semaphores
• One with condition variables

Nov 7, 2018 Sprenkle - CSCI330 2

2

Review: Producer-Consumer Code

producer () {
sodaLock.acquire()

while(numSodas==MaxSodas){
hasRoom.wait(sodaLock)

}

numSodas++;

hasSoda.signal()

sodaLock.release()
}

consumer () {
sodaLock.acquire()

while (numSodas == 0) {
hasSoda.wait(sodaLock)

}

numSodas--;

hasRoom.signal()

sodaLock.release()
}

MxCV1 MxCV2

CV1CV2

Nov 7, 2018 Sprenkle - CSCI330 3

Requires one lock and two condition variables

sodaLock = new Lock(); hasSoda = new CV(); hasRoom = new CV();

Review: Producer-Consumer with
Semaphores and Mutex

producer () {
// wait for empty slot
emptySlots.P()
// lock shared state
mutex.P()
put one soda in
mutex.V()

// signal item arrival
fullSlots.V()

}

consumer () {
// wait for item arrival
fullSlots.P()
// lock shared state
mutex.P()
take one soda out
mutex.V()

//signal empty slot
emptySlots.V()

}

Semaphore mutex(1), fullSlots(0), emptySlots(MaxSodas)

Nov 7, 2018 Sprenkle - CSCI330 4

Does this work with multiple consumers and/or producers?

Yes!...

3

Analysis: Producer-Consumer with
Semaphores and Mutex

producer () {
// wait for empty slot
emptySlots.P()
// lock shared state
mutex.P()
put one soda in
mutex.V()

// signal item arrival
fullSlots.V()

}

consumer () {
// wait for item arrival
fullSlots.P()
// lock shared state
mutex.P()
take one soda out
mutex.V()

//signal empty slot
emptySlots.V()

}

Semaphore mutex(1), fullSlots(1), emptySlots(MaxSodas-1)

Nov 7, 2018 Sprenkle - CSCI330 5

What if 1 full slot and multiple consumers call down?
Only one will see semaphore at 1, rest see at 0.

Review: Basic Producer/Consumer

• This use of a semaphore pair is called a split binary
semaphore
Ø sum of the values is always 1

• It is the same as ping-pong:
producer and consumer access the buffer in strict
alternation

Nov 7, 2018 Sprenkle - CSCI330 6

void Produce(int m) {
empty.P();
buf = m;
full.V();

}

int Consume() {
int m;
full.P();
m = buf;
empty.V();
return m;

}

empty = Semaphore(1);
full = Semaphore(0);
int buf;

Why don’t we need a lock in this solution?

Can’t both be in the critical section
because of the limit of only one resource.

4

DINING PHILOSPHERS
Classical Problem: intellectually interesting, low practical utility

Nov 7, 2018 Sprenkle - CSCI330 7

Dining Philosophers Problem
• N processes share N resources
• Resource requests occur in pairs

w/ random think times
• Hungry philosopher grabs
right chopstick
Ø and doesn’t let go…
Øuntil the other chopstick is free
Ø and the rice is eaten

while(true) {
think();
getChopsticks();
eat();
putChopsticks();

}

Nov 7, 2018 Sprenkle - CSCI330 8

What is shared?
What are the ordering
constraints?

What happens in the case of 5
philosophers?
What if fewer or more
philosophers?
What are your goals for a solution?

5

Observations?

Nov 7, 2018 Sprenkle - CSCI330 9

Resource Graph or Wait-for Graph
• A vertex for each process and each resource
• If process A holds resource R, add an arc from R

to A

21

B

A
A grabs chopstick 1 B grabs chopstick 2

Nov 7, 2018 Sprenkle - CSCI330 10

6

Resource Graph or Wait-for Graph
• A vertex for each process and each resource
• If process A holds resource R, add an arc from R

to A
• If process A is waiting for R, add an arc from A to

R

21

B

A
A grabs chopstick 1

and
waits for chopstick 2

B grabs chopstick 2
and

waits for chopstick 1

Nov 7, 2018 Sprenkle - CSCI330 11

Resource Graph or Wait-for Graph
• A vertex for each process and each resource
• If process A holds resource R, add an arc from R to A
• If process A is waiting for R, add an arc from A to R
• The system is deadlocked iff the wait-for graph has

at least one cycle.

21

B

A
A grabs chopstick 1

and
waits for chopstick 2

B grabs chopstick 2
and

waits for chopstick 1

Nov 7, 2018 Sprenkle - CSCI330 12How does this help us think about dining philosophers?

7

Possible Solutions to Dining Philosophers

• Asymmetric solution

Ø Some pick up left chopstick first, some pick up right

• How does that play out?

• Don’t pick up either chopstick until both are free

ØHow would you implement this?

• Allow a philosopher to take a chopstick from
another philosopher who isn’t yet eating

• Not ideal

ØReduce the number of philosophers or increase the
number of resources

Nov 7, 2018 Sprenkle - CSCI330 13

Still issues with starvation--
Need guarantee of locks being acquired in order

Deadlock vs. starvation
• A deadlock is a situation in which a set of threads

are all waiting for another thread to move.
Ø But none of the threads can move because they are all

waiting for another thread to do it.

• Deadlocked threads sleep “forever”: the software
“freezes”.
Ø It stops executing, stops taking input, stops generating

output. There is no way out.

• Starvation (also called livelock) is different:
Ø Some schedule exists that can exit the livelock state, and

the scheduler may select it, even if the probability is low.
Nov 7, 2018 Sprenkle - CSCI330 14

8

12

Y

A1 A2 R2 R1

A2

A1

R1

R2

RTG for Two Philosophers

12

X

Synchronization: acquiring
and releasing locks for each
chopstick (1 and 2)

Nov 7, 2018 Sprenkle - CSCI330 15

Philosophers X and Y

12

Y

A1 A2 R2 R1

A2

A1

R1

R2

RTG for Two Philosophers

12

XSn

Sm
Sn

Sm

There are really only 9 states we
care about: the key transitions
are acquire and release events.

Nov 7, 2018 Sprenkle - CSCI330 16

Philosophers X and Y

9

12

Y

X

A1 A2 R2 R1

A2

A1

R1

R2

Two Philosophers Living Dangerously

???

Nov 7, 2018 Sprenkle - CSCI330 17

12

Y

X

A1 A2 R2 R1

A2

A1

R1

R2

The Inevitable Result

This is a deadlock state:
There are no legal
transitions out of it.

Nov 7, 2018 Sprenkle - CSCI330 18

10

Conditions for Deadlock

• Four conditions must be present for deadlock to
occur:
1. Non-preemption of ownership. Resources are

never taken away from the holder.

2. Exclusion. A resource has at most one holder.

3. Hold-and-wait. Holder blocks to wait for another
resource to become available.

4. Circular waiting. Threads acquire resources in
different orders.

Nov 7, 2018 Sprenkle - CSCI330 19

Not All Schedules Lead to Collisions
• The scheduler+machine choose a schedule, i.e., a

trajectory or path through the graph
Ø Synchronization constrains the schedule to avoid

illegal states
Ø Some paths “just happen” to dodge dangerous states

as well
• How likely is deadlock to occur as:

Ø think times increase?
Ønumber of philosophers and number of resources

(value of N) increases?

Nov 7, 2018 Sprenkle - CSCI330 20

11

Dealing with Deadlock
1. Ignore it. Do you feel lucky?
2. Detect and recover. Check for cycles and break them by

restarting activities (e.g., killing threads).
3. Prevent it. Break any precondition.

Ø Keep it simple. Avoid blocking with any lock held.
Ø Acquire nested locks in some predetermined order.
Ø Acquire resources in advance of need; release all to retry.
Ø Avoid “surprise blocking” at lower layers of your program.

4. Avoid it.
Ø Deadlock can occur by allocating variable-size resource

chunks from bounded pools
• Google “Banker’s algorithm”.

Nov 7, 2018 Sprenkle - CSCI330 21

Guidelines for Lock Granularity
• Keep critical sections short. Push “non-critical”

statements outside to reduce contention.
• Limit lock overhead. Keep to a minimum the

number of times mutexes are acquired and
released.
Ø Note tradeoff between contention and lock overhead.

• Use as few mutexes as possible, but no fewer.
Ø Choose lock scope carefully: if the operations on two

different data structures can be separated, it may be
more efficient to synchronize those structures with
separate locks.

Ø Add new locks only as needed to reduce contention.
“Correctness first, performance second!”

Nov 7, 2018 Sprenkle - CSCI330 22

12

Looking Ahead

• Synchronization Assignment – Due Monday

ØPart 1: Discussion/pseudocode

ØPart 2: implementation in Java

Nov 7, 2018 Sprenkle - CSCI330 23

