
1

Today
• Synchronization Mechanisms – tradeoffs
• File Systems

ØDisk Storage

Nov 9, 2018 Sprenkle - CSCI330 1

Review

• The Dining Philosophers is a classic

synchronization problem

ØWhat issues did it bring up?

ØWhat were our goals for a solution?

ØWhat ideas for solutions did we have?

Nov 9, 2018 Sprenkle - CSCI330 2

2

Review: Conditions for Deadlock

• Four conditions must be present for deadlock to
occur:
1. Non-preemption of ownership. Resources are

never taken away from the holder.

2. Exclusion. A resource has at most one holder.

3. Hold-and-wait. Holder blocks to wait for another
resource to become available.

4. Circular waiting. Threads acquire resources in
different orders.

Nov 9, 2018 Sprenkle - CSCI330 3

Review: Dealing with Deadlock
1. Ignore it. Do you feel lucky?
2. Detect and recover. Check for cycles and break them by

restarting activities (e.g., killing threads).
3. Prevent it. Break any precondition.

Ø Keep it simple. Avoid blocking with any lock held.
Ø Acquire nested locks in some predetermined order.
Ø Acquire resources in advance of need; release all to retry.
Ø Avoid “surprise blocking” at lower layers of your program.

4. Avoid it.
Ø Deadlock can occur by allocating variable-size resource

chunks from bounded pools
• Google “Banker’s algorithm”.

Nov 9, 2018 Sprenkle - CSCI330 4

3

Review: Possible Solutions to Dining
Philosophers
• Asymmetric solution

Ø Some pick up left chopstick first, some pick up right
• How does that play out?

• Don’t pick up either chopstick until both are free
ØHow would you implement this?

• Allow a philosopher to take a chopstick from
another philosopher who isn’t yet eating

• Not ideal
ØReduce the number of philosophers or increase the

number of resources

Nov 9, 2018 Sprenkle - CSCI330 5

Still issues with starvation--
Need guarantee of locks being acquired in order

Review: Deadlock vs. Starvation

• A deadlock is a situation in which a set of threads
are all waiting for another thread to move.

Ø But none of the threads can move because they are all

waiting for another thread to do it.

• Deadlocked threads sleep “forever”: the software
“freezes”.

Ø It stops executing, stops taking input, stops generating

output. There is no way out.

• Starvation (also called livelock) is different:

Ø Some schedule exists that can exit the livelock state, and

the scheduler may select it, even if the probability is low.

Nov 9, 2018 Sprenkle - CSCI330 6

4

SYNCHRONIZATION WRAPUP

Nov 9, 2018 Sprenkle - CSCI330 7

Comparing Synchronization Mechanisms
• Synchronization Mechanisms

Ø Lock
ØCV
Ø Semaphore
ØMonitors

• Compare and Contrast
ØWhen to use

Nov 9, 2018 Sprenkle - CSCI330 8

5

Synchronization Mechanisms
• Mutex/lock

ØMutual exclusion: only one thread can access a
resource at a time

• Signaling mechanisms:
ØCondition Variable
Ø Semaphore

• Monitor: lock/CV combo

Nov 9, 2018 Sprenkle - CSCI330 9

Semaphores vs. Mutex
• A binary semaphore is similar to a mutex, but …

Nov 9, 2018 Sprenkle - CSCI330 10

We talked about correct use, but …
what could we do with semaphores that is prevented with a mutex?

6

Semaphores vs. Mutex
• A binary semaphore is similar to a mutex, but …
• Mutex has an owner

ØOnly the owner can acquire/release the lock
• Semaphores: anyone could release the lock

Nov 9, 2018 Sprenkle - CSCI330 11

Semaphores vs. Condition Variables
• Semaphores are like CVs with an atomic integer

• V(Up) differs from signal (notify) in that …?

• P(Down) differs from wait in that …?

Nov 9, 2018 Sprenkle - CSCI330 12

7

Semaphores vs. Condition Variables

• Semaphores are like CVs with an atomic integer.

• V(Up) differs from signal (notify) in that:

Ø Signal has no effect if no thread is waiting on the condition

• Condition variables are not variables! They have no value!

Ø Up has the same effect whether or not a thread is waiting

• Semaphores retain a “memory” of calls to Up.

• P(Down) differs from wait in that:

Ø Down checks the condition and blocks only if necessary.

• No need to recheck the condition after returning from Down

• The wait condition is defined internally, but is limited to a
counter

Ø Wait is explicit: it does not check the condition itself, ever

• Condition is defined externally and protected by integrated
mutex

Nov 9, 2018 Sprenkle - CSCI330 13

Monitors vs. semaphores
• Monitors

Ø Separate mutual exclusion and wait/signal
operations

• Semaphores
ØProvide both with same mechanism

• Semaphores are more “elegant”
ØAt least for producer/consumer (counted resources)
ØCan be harder to program

Nov 9, 2018 Sprenkle - CSCI330 14

8

Monitors vs. semaphores

• Where are the conditions in both?
• Which is more flexible?
• Why do monitors need a lock, but not

semaphores?

// Monitors
lock (mutex)

while (condition) {
cv.wait (mutex)

}

unlock (mutex)

// Semaphores
down (semaphore)

Nov 9, 2018 Sprenkle - CSCI330 15

Monitors vs. semaphores

• When are semaphores appropriate?
ØWhen shared integer maps naturally to problem at

hand
• when the condition involves a count of one thing

// Monitors
lock (mutex)

while (condition) {
cv.wait (CV, mutex)

}

unlock (mutex)

// Semaphores
down (semaphore)

Nov 9, 2018 Sprenkle - CSCI330 16

9

Where We Are …
• We’ve talked about

ØKernel
ØProcesses, process management
Ø Synchronization

• Moving toward storage
Ø File systems

• Disk management, storage
ØMemory management

Nov 9, 2018 Sprenkle - CSCI330 18

Why Do We Want File Systems?
• What are the goals of file systems?

ØWhat adjectives do you want to use to describe file
systems?

Nov 9, 2018 Sprenkle - CSCI330 19

10

Goals for File Systems

• Long-term storage
ØPersistent: remains “forever”

• Reliable

• Large capacity, low cost

• High performance

• Named data (lookup/query)

• Controlled sharing

• Security: protecting information

Nov 9, 2018 Sprenkle - CSCI330 20

DISK STORAGE

Nov 9, 2018 Sprenkle - CSCI330 21

11

Using Disks for Storage

Why disks? persistent, random access, cheap

Nov 9, 2018 Sprenkle - CSCI330 22

The First Commercial Disk Drive

1956
IBM RAMDAC computer
included the IBM Model
350 disk storage system

5M (7 bit) characters
50 x 24� platters
Access time = < 1 second

Nov 9, 2018 Sprenkle - CSCI330 23

12

Source: http://www.mkomo.com/cost-per-gigabyte-update

Point colors relate to the size of the drive

Terabytes

Gigabytes

UnknownMegabytes

Nov 9, 2018 Sprenkle - CSCI330 24

Source: https://www.backblaze.com/blog/hard-drive-cost-per-gigabyte/
Nov 9, 2018 Sprenkle - CSCI330 25

13

Using Disks for Storage

• Why disks? persistent, random access, cheap
• Biggest hurdle to OS: disks are [relatively] slow

Nov 9, 2018 Sprenkle - CSCI330 26

Disk Geometry
• Disk components

ØPlatters
Ø Surfaces
Ø Tracks
Ø Sectors
ØCylinders
ØArm
ØHeads

Nov 9, 2018 Sprenkle - CSCI330 27

14

Track

Sector

Head
Arm

Arm
Assembly

Platter

Surface

Surface

Motor Motor

Spindle

Head and track are not to scale.
Head is actually much much
bigger than a track.

Nov 9, 2018 Sprenkle - CSCI330 28

Hard Disk Performance: Moving Parts

• Moving parts: spinning platters, disk actuator
arm

• Much more likely to fail than most other
components

sector

track cylinder

disk r/w
head(s)

platters

disk arm Side viewTop view

Nov 9, 2018 Sprenkle - CSCI330 29

15

How Long to Access Data on Disk?
• 5-15 ms on average for access to random

location
Ø Includes seek time to move head to desired track

• Roughly linear with radial distance
Ø Includes rotational delay

• Time for sector to rotate under head
• Times depend on drive model:

Ø platter width (e.g., 2.5 in vs. 3.5 in)
Ø rotation rate (5400 RPM vs. 15K RPM).
Ø Enterprise drives use more/smaller platters

spinning faster.
• These properties are mechanical and improve

as technology advances over time
Nov 9, 2018 Sprenkle - CSCI330 30

SectorTrack

Cylinder

Head
Platter

Arm

Disk Interaction: 1960s – 80s
• Specifying disk requests required a lot of info:

ØCylinder #, head #, sector # (CHS)
ØDisks did not have controller hardware built-in

• Early OSes needed to know this info to make
requests but didn’t optimize data storage for it

• ~mid 80’s: “fast file system” emerged, which
took disk geometry into account.
ØPaper: “A Fast File System for Unix”

• https://dl.acm.org/citation.cfm?doid=989.990
Ø Example disk in paper is 150 MB

Nov 9, 2018 Sprenkle - CSCI330 32

16

A few words about SSDs
• Solid State Drives (e.g., Flash memory):

Ø No spinning platter, no arm to move, no mechanicals.
Ø Faster than disk (at least for reads), slower than DRAM.
Ø No seek cost. But writes require slow block erase and/or

limited # of writes to each cell before it fails.
Ø Technology is advancing rapidly; costs are dropping

• How should we use them? Are they just fast/expensive
disks? Or can we use them like memory that is
persistent? Open research question.

• Trend: use them as block storage, and/or combine
them with HDDs to make hybrids optimized for
particular uses.

Nov 9, 2018 Sprenkle - CSCI330 34

Modern Disk Interaction
• Very simple block number interface:

Ø Disk is divided into N abstract blocks (traditionally 512 B,
today often 4 KB)

Ø read(block #)
Ø write(block #, data)

• Trust the disk controller
Ø Convert block number to the “right” place in disk

geometry.
Ø For some disks (SSDs), this may not even be the same

location every time!

• Significant research happening now in new types of
storage

Nov 9, 2018 Sprenkle - CSCI330 35

17

Storage Abstraction for File System

Abstraction: Illusion of an array of blocks.

Block 0
Block 1
Block 2

Block n-1

Nov 9, 2018 Sprenkle - CSCI330 36

Spinning
Disk

SSD

Storage Abstraction for File System

Abstraction: Illusion of an array of blocks.

Block 0
Block 1
Block 2

Block n-1

Can I have block 5?
Here’s block 5! Block 5

Nov 9, 2018 Sprenkle - CSCI330 37

Spinning
Disk

SSD

18

Looking Ahead
• Synchronization Assignment due Monday
• File Systems!

Nov 9, 2018 Sprenkle - CSCI330 38

