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Today
• Synchronization Mechanisms – tradeoffs
• File Systems

ØDisk Storage
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Review

• The Dining Philosophers is a classic  

synchronization problem

ØWhat issues did it bring up?

ØWhat were our goals for a solution?

ØWhat ideas for solutions did we have?
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Review: Conditions for Deadlock

• Four conditions must be present for deadlock to 
occur: 
1. Non-preemption of ownership.  Resources are 

never taken away from the holder.

2. Exclusion.  A resource has at most one holder.  

3. Hold-and-wait.  Holder blocks to wait for another 
resource to become available.

4. Circular waiting.  Threads acquire resources in 
different orders.  
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Review: Dealing with Deadlock
1. Ignore it.  Do you feel lucky?
2. Detect and recover.  Check for cycles and break them by 

restarting activities (e.g., killing threads).
3. Prevent it. Break any precondition.

Ø Keep it simple.  Avoid blocking with any lock held.
Ø Acquire nested locks in some predetermined order.  
Ø Acquire resources in advance of need; release all to retry.
Ø Avoid “surprise blocking” at lower layers of your program.

4. Avoid it.
Ø Deadlock can occur by allocating variable-size resource 

chunks from bounded pools
• Google “Banker’s algorithm”.
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Review: Possible Solutions to Dining 
Philosophers
• Asymmetric solution

Ø Some pick up left chopstick first, some pick up right
• How does that play out?

• Don’t pick up either chopstick until both are free
ØHow would you implement this?

• Allow a philosopher to take a chopstick from 
another philosopher who isn’t yet eating

• Not ideal
ØReduce the number of philosophers or increase the 

number of resources
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Still issues with starvation--
Need guarantee of locks being acquired in order

Review: Deadlock vs. Starvation

• A deadlock is a situation in which a set of threads 
are all waiting for another thread to move.

Ø But none of the threads can move because they are all 

waiting for another thread to do it.

• Deadlocked threads sleep “forever”: the software 
“freezes”.  

Ø It stops executing, stops taking input, stops generating 

output.  There is no way out.

• Starvation (also called livelock) is different: 

Ø Some schedule exists that can exit the livelock state, and 

the scheduler may select it, even if the probability is low.
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SYNCHRONIZATION WRAPUP
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Comparing Synchronization Mechanisms
• Synchronization Mechanisms

Ø Lock
ØCV
Ø Semaphore
ØMonitors

• Compare and Contrast
ØWhen to use
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Synchronization Mechanisms
• Mutex/lock

ØMutual exclusion: only one thread can access a 
resource at a time

• Signaling mechanisms:
ØCondition Variable
Ø Semaphore

• Monitor: lock/CV combo
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Semaphores vs. Mutex
• A binary semaphore is similar to a mutex, but …
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We talked about correct use, but …  
what could we do with semaphores that is prevented with a mutex?
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Semaphores vs. Mutex
• A binary semaphore is similar to a mutex, but …
• Mutex has an owner

ØOnly the owner can acquire/release the lock
• Semaphores: anyone could release the lock
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Semaphores vs. Condition Variables
• Semaphores are like CVs with an atomic integer

• V(Up) differs from signal (notify) in that …?

• P(Down) differs from wait in that …?
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Semaphores vs. Condition Variables

• Semaphores are like CVs with an atomic integer.

• V(Up) differs from signal (notify) in that:

Ø Signal has no effect if no thread is waiting on the condition

• Condition variables are not variables!  They have no value!

Ø Up has the same effect whether or not a thread is waiting

• Semaphores retain a “memory” of calls to Up.

• P(Down) differs from wait in that:

Ø Down checks the condition and blocks only if necessary.

• No need to recheck the condition after returning from Down

• The wait condition is defined internally, but is limited to a 
counter

Ø Wait is explicit: it does not check the condition itself, ever

• Condition is defined externally and protected by integrated 
mutex
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Monitors vs. semaphores
• Monitors

Ø Separate mutual exclusion and wait/signal 
operations

• Semaphores
ØProvide both with same mechanism

• Semaphores are more “elegant”
ØAt least for producer/consumer (counted resources)
ØCan be harder to program

Nov 9, 2018 Sprenkle - CSCI330 14



8

Monitors vs. semaphores

• Where are the conditions in both?
• Which is more flexible?
• Why do monitors need a lock, but not 

semaphores?

// Monitors
lock (mutex)

while (condition) {
cv.wait (mutex)

}

unlock (mutex)

// Semaphores
down (semaphore)
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Monitors vs. semaphores

• When are semaphores appropriate?
ØWhen shared integer maps naturally to problem at 

hand
• when the condition involves a count of one thing

// Monitors
lock (mutex)

while (condition) {
cv.wait (CV, mutex)

}

unlock (mutex)

// Semaphores
down (semaphore)
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Where We Are …
• We’ve talked about

ØKernel
ØProcesses, process management
Ø Synchronization

• Moving toward storage
Ø File systems

• Disk management, storage
ØMemory management
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Why Do We Want File Systems?
• What are the goals of file systems?

ØWhat adjectives do you want to use to describe file 
systems?
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Goals for File Systems

• Long-term storage 
ØPersistent: remains “forever”

• Reliable

• Large capacity, low cost

• High performance

• Named data (lookup/query)

• Controlled sharing

• Security: protecting information
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DISK STORAGE
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Using Disks for Storage

Why disks? persistent, random access, cheap
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The First Commercial Disk Drive

1956
IBM RAMDAC computer 
included the IBM Model 
350 disk storage system

5M (7 bit) characters
50 x 24� platters
Access time = < 1 second
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Source: http://www.mkomo.com/cost-per-gigabyte-update

Point colors relate to the size of the drive

Terabytes

Gigabytes

UnknownMegabytes
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Source: https://www.backblaze.com/blog/hard-drive-cost-per-gigabyte/
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Using Disks for Storage

• Why disks? persistent, random access, cheap
• Biggest hurdle to OS: disks are [relatively] slow
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Disk Geometry
• Disk components 

ØPlatters 
Ø Surfaces
Ø Tracks
Ø Sectors
ØCylinders 
ØArm
ØHeads
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Track

Sector

Head
Arm

Arm 
Assembly

Platter

Surface

Surface

Motor Motor

Spindle

Head and track are not to scale. 
Head is actually much much 
bigger than a track.
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Hard Disk Performance: Moving Parts

• Moving parts: spinning platters, disk actuator 
arm

• Much more likely to fail than most other 
components

sector

track cylinder

disk r/w
head(s)

platters

disk arm Side viewTop view

Nov 9, 2018 Sprenkle - CSCI330 29



15

How Long to Access Data on Disk?
• 5-15 ms on average for access to random 

location
Ø Includes seek time to move head to desired track

• Roughly linear with radial distance
Ø Includes rotational delay

• Time for sector to rotate under head
• Times depend on drive model:

Ø platter width (e.g., 2.5 in vs. 3.5 in)
Ø rotation rate (5400 RPM vs. 15K RPM).
Ø Enterprise drives use more/smaller platters 

spinning faster.
• These properties are mechanical and improve 

as technology advances over time
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Cylinder

Head
Platter

Arm

Disk Interaction: 1960s – 80s
• Specifying disk requests required a lot of info:

ØCylinder #, head #, sector #  (CHS)
ØDisks did not have controller hardware built-in

• Early OSes needed to know this info to make 
requests but didn’t optimize data storage for it

• ~mid 80’s: “fast file system” emerged, which 
took disk geometry into account.
ØPaper: “A Fast File System for Unix”

• https://dl.acm.org/citation.cfm?doid=989.990
Ø Example disk in paper is 150 MB

Nov 9, 2018 Sprenkle - CSCI330 32



16

A few words about SSDs
• Solid State Drives (e.g., Flash memory):

Ø No spinning platter, no arm to move, no mechanicals.
Ø Faster than disk (at least for reads), slower than DRAM.
Ø No seek cost.  But writes require slow block erase and/or 

limited # of writes to each cell before it fails.  
Ø Technology is advancing rapidly; costs are dropping

• How should we use them?  Are they just fast/expensive 
disks?  Or can we use them like memory that is 
persistent? Open research question.

• Trend: use them as block storage, and/or combine 
them with HDDs to make hybrids optimized for 
particular uses.
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Modern Disk Interaction
• Very simple block number interface:

Ø Disk is divided into N abstract blocks (traditionally 512 B, 
today often 4 KB)

Ø read(block #)
Ø write(block #, data)

• Trust the disk controller
Ø Convert block number to the “right” place in disk 

geometry.
Ø For some disks (SSDs), this may not even be the same 

location every time!

• Significant research happening now in new types of 
storage
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Storage Abstraction for File System

Abstraction: Illusion of an array of blocks.

Block 0
Block 1
Block 2

Block n-1
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Spinning 
Disk

SSD

Storage Abstraction for File System

Abstraction: Illusion of an array of blocks.

Block 0
Block 1
Block 2

Block n-1

Can I have block 5?
Here’s block 5! Block 5
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Spinning 
Disk

SSD
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Looking Ahead
• Synchronization Assignment due Monday
• File Systems!
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