
1

Today
• File System Performance

ØDisk scheduling
• File System Reliability

ØRAID

Nov 16, 2018 Sprenkle - CSCI330 1

Review
• A disk is a bunch of blocks in which to store data

Ø How does FS give order and structure to those blocks?
• How do inodes handle the wide variety of file sizes?

Ø What are the benefits of this design?
• How are files within the file system structured?

Ø How are they structured in our OS project? On most
modern OSs?

• How does the user interact with the file system?
Ø What does the FS do in response?

• How can an OS handle multiple file systems within
one name space?
Ø What are the tradeoffs of this approach?

Nov 16, 2018 Sprenkle - CSCI330 2

2

Review: Disk
• File System Metadata

Ø Format, size of blocks
Ø Stored in superblock
ØReplicated

• File Metadata
Ø Inode table

• Data Blocks

FS Metadata

File
Metadata

Data Blocks

Nov 16, 2018 Sprenkle - CSCI330 3

Disk

Review: Block Pointers: Multi-Level Table

Direct: 10 x 1KB = 10KB
Single Indirect: 256 x 1KB = 256KB

Double Indirect: 256 x 256 x 1KB = 64MB
Triple Indirect: 256 x 256 x 256 x 1KB = 16GB

…

Block
Map

Data
Blocks

Single
Indirect
Block

Ptrs to
Data

blocks

Double
Indirect
BlockTriple

Indirect
Block

Ptrs to
Single

Indirect
BlocksPtrs to

Double
Indirect
Blocks

…

…

Direct
pointers

Nov 16, 2018 Sprenkle - CSCI330 4

3

Review: Userspace Perspective
• Userspace processes make system calls to

interact with files:

OS Kernel

Hardware

Kernel
Userspace

Text

Data

Stack

OS

Heap

User
process P1

open(“file_x”, …)

File
System

P1’s Descriptor Table
… …
3 file_x
… …

Nov 16, 2018 Sprenkle - CSCI330 5

Review: Userspace Perspective
• Userspace processes make system calls to

interact with files:

OS Kernel

Hardware

Kernel
Userspace

Text

Data

Stack

OS

Heap

User
process P1

File
System

P1’s Descriptor Table

File descriptor (3)

Nov 16, 2018 Sprenkle - CSCI330 6

… …
3 file_x
… …

4

Review: Userspace Perspective
• Userspace processes make system calls to

interact with files:

OS Kernel

Hardware

Kernel
Userspace

Text

Data

Stack

OS

Heap

User
process P1

File
System

P1’s Descriptor Table

read(3, …)
write(3, …)
close(3)

This picture:
one process

one file system

Nov 16, 2018 Sprenkle - CSCI330 7

… …
3 file_x
… …

All subsequent call will use the fd

Review: Virtual File System (VFS) Layer
• Userspace processes make system calls to

interact with files:

Hardware

Kernel
Userspace

Text

Data

Stack

OS

Heap

User
process P1

File System 1

P1’s Descriptor Table

FS Requests

Nov 16, 2018 Sprenkle - CSCI330 8

… …
3 file_x
… …

File System 2 File System 3

Virtual File System Abstraction Layer

5

VFS Layer
• Unifies the file name space and paths

ØPaths all start from common root (/) and are passed
to VFS layer

ØVFS layer records which paths correspond to which
FS

• VFS translates application requests to
appropriate low-level FS calls

Nov 16, 2018 Sprenkle - CSCI330 9

Ke
rn

el

File System 1 File System 2 File System 3

Virtual File System Abstraction Layer

Analyzing VFS Layer
• Benefits

Øuser doesn’t need to know the details about file
systems

Ø easy expansion, removal of disks/file systems
• Drawback: layer adds overhead – could slow

down performance

Nov 16, 2018 Sprenkle - CSCI330 10

6

Analyzing VFS Layer
• How can we mitigate that performance hit?

ØCaching!
Ø Inode Cache

• Store recently accessed inodes (file/directory info)
ØDirectory Cache

• Full directory path à inode id

Nov 16, 2018 Sprenkle - CSCI330 11

Virtual File System (VFS) Layer
• Userspace processes make system calls to

interact with files:

Hardware

Kernel
Userspace

Text

Data

Stack

OS

Heap

User
process P1

File System 1

P1’s Descriptor Table

FS Requests

Nov 16, 2018 Sprenkle - CSCI330 12

… …
3 file_x
… …

File System 2 File System 3

Virtual File System Abstraction Layer

This picture:
one process

multiple file systems

7

Multiple Concurrent Disk Requests
• Userspace processes make system calls to

interact with files:

Hardware

Kernel
Userspace

Text

Data

Stack

OS

Heap

File System 1

P1’s Descriptor Table

FS Requests

Nov 16, 2018 Sprenkle - CSCI330 13

… …
3 file_x
… …

Virtual File System Abstraction Layer

This picture:
multiple processes,

one file systemText

Data

Stack

OS

Heap

Text

Data

Stack

OS

Heap

Concurrent disk requests

Disk Scheduling
• Many sources of disk I/O requests

Ø OS
Ø System processes
Ø User processes

• I/O request includes input or output mode, disk
address, memory address, number of sectors to
transfer

• OS maintains queue of requests, per disk or device
Ø Idle disk can immediately work on I/O request
Ø Busy disk means request must queue

Nov 16, 2018 Sprenkle - CSCI330 14

8

Disk Scheduling

• Unlike CPU scheduling, disk characteristics vary
significantly
ØCPUs have different ISAs, but they mostly behave the

same

• For certain types of disks (solid state), FIFO might
make a lot of sense (when targeting throughput):
Ø The disk has no moving parts, so the fastest thing to

do is just issue requests immediately as they come in

ØMaybe merge adjacent requests

• For traditional spinning disks?
Nov 16, 2018 Sprenkle - CSCI330 15

Disk Scheduling

• The operating system is responsible for using

hardware efficiently
Ø For the disk drives: having a fast access time and disk

bandwidth

• Minimize seek time

Ø Seek time » seek distance

• Disk bandwidth is the total number of bytes

transferred, divided by the total time between

the first request for service and the completion

of the last transfer

Nov 16, 2018 Sprenkle - CSCI330 16

9

Disk Arm
• Assume the disk arm can move back and forth

from left to right and right to left.

Track0 Trackmax

Track0 Trackmax

Request @
Track 20

time

wider horizontal distance à
longer seek time

Nov 16, 2018 Sprenkle - CSCI330 17

Optimizing Disk Scheduling
• Goal: optimize performance

Ø First: disk bandwidth
ØAny other concerns?

Nov 16, 2018 Sprenkle - CSCI330 18

10

Disk Scheduling
• Like CPU scheduling, disk scheduling is a policy

decision
Ø What should happen if multiple processes all want to

access disk?
• Like CPU scheduling, the choice of metric influences

the policy decision:
Ø Priority: if a process is important, give execute its

requests first
Ø Wait time/latency, from request to completion
Ø Throughput: maximize the data transfer from the disk
Ø Fairness: give each process the same opportunity to

access the disk

Nov 16, 2018 Sprenkle - CSCI330 19

In some cases,
trade-off between last two.

Optimizing Disk Scheduling
• How can we optimize disk scheduling?
• What are possible algorithms?

ØWhat are their tradeoffs?
Ø For each algorithm, write down pros and cons

• What concerns/questions do we have in picking
an algorithm?

Nov 16, 2018 Sprenkle - CSCI330 20

Track0 Trackmax

Request @
Track 20

time
What would your
algorithms look like
in this form?

11

Disk Scheduling
• Several algorithms exist to schedule the servicing

of disk I/O requests
• The analysis is true for one or many platters
• Consider a request queue

Ø 98, 183, 37, 122, 14, 124, 65, 67
ØHead pointer is at 53

Nov 16, 2018 Sprenkle - CSCI330 21

FCFS: First Come First Serve

Total head movement of 640 cylinders

Nov 16, 2018 Sprenkle - CSCI330 22

Analyze the performance of this algorithm,
specifically here and in general.

12

FCFS: First Come First Serve

Total head movement of 640 cylinders

Nov 16, 2018 Sprenkle - CSCI330 23

Performance is highly variable:
depends on the order and track location of requests

Shortest Seek Time First (SSTF)
• SSTF selects request with the minimum seek

time from the current head position
• SSTF scheduling is a form of SJF scheduling

Nov 16, 2018 Sprenkle - CSCI330 24
Total head movement of 236 cylinders

13

Shortest Seek Time First (SSTF)
• SSTF selects request with the minimum seek

time from the current head position
• SSTF scheduling is a form of SJF scheduling

Nov 16, 2018 Sprenkle - CSCI330 25
Total head movement of 236 cylinders

Good: minimizes seek time
Bad: may cause starvation of some requests

SCAN Algorithm
• Sometimes called the elevator algorithm
• The disk arm starts at one end of the disk, and

moves toward the other end
Ø services requests until it gets to the other end of the

disk
Øhead movement is reversed and servicing continues

Nov 16, 2018 Sprenkle - CSCI330 26

14

SCAN Algorithm

Total head movement of 208 cylinders

Nov 16, 2018 Sprenkle - CSCI330 27

SCAN Algorithm

Total head movement of 208 cylinders

Nov 16, 2018 Sprenkle - CSCI330 28

Note: when head “turns”, likely not that many
requests are right there. The largest density
is at other end of disk and wait the longest.
So…

15

C-SCAN
• Provides a more uniform wait time than SCAN
• Head moves from one end of the disk to the

other, servicing requests as it goes
ØWhen it reaches the other end, it immediately

returns to the beginning of the disk, without
servicing any requests on the return trip

• Treats the cylinders as a circular list that wraps
around from the last cylinder to the first one

Nov 16, 2018 Sprenkle - CSCI330 29

C-SCAN

Nov 16, 2018 Sprenkle - CSCI330 30

16

C-LOOK
• LOOK a version of SCAN, C-LOOK a version of C-

SCAN
• Arm only goes as far as the last request in each

direction, then reverses direction immediately,
without first going all the way to the end of the
disk

Nov 16, 2018 Sprenkle - CSCI330 31

C-LOOK

Nov 16, 2018 Sprenkle - CSCI330 32

17

Linux’s Default Scheduler: CFQ

• Completely Fair Queueing (CFQ)
ØNot to be confused with the “completely fair

scheduler (CFS)” for the CPU…

Disk dispatch queue
P3

P2

P1

PN

…

• Keep a disk request queue for each process

• Move requests from process queues to
dispatch queue in round-robin fashion (if
equal priority)

Nov 16, 2018 Sprenkle - CSCI330 33

Linux’s Default Scheduler: CFQ

• Completely Fair Queueing (CFQ)
ØNot to be confused with the “completely fair

scheduler (CFS)” for the CPU…

Disk dispatch queue
P3

P2

P1

PN

…

• Keep a disk request queue for each process

• Move requests from process queues to
dispatch queue in round-robin fashion (if
equal priority)

Nov 16, 2018 Sprenkle - CSCI330 34

Can reorder these requests
to improve disk performance
within some constraints

18

Selecting a Disk-Scheduling Algorithm
• D-S algorithm should be written as a separate module of

the operating system
Ø Can be replaced with a different algorithm if necessary

• Performance depends on the number and types of
requests
Ø If only one request in queue – becomes FCFS

• SCAN is common
Ø Less computational cost

• SCAN and C-SCAN perform better for systems with heavy
load on the disk
Ø Less starvation

• Add a deadline scheduler
Ø if a request hasn’t been fulfilled within some period of time,

service it
Nov 16, 2018 Sprenkle - CSCI330 35

How Persistent Storage Affects OS Design

Goal Physical Characteristics Design Implication

High
Performance

• Large cost to initiate I/O

• Organize storage to access

data in large sequential units

• Use caching

Named Data
• Large capacity

• Survives crashes

• Shared across programs

• Support files and directories

with meaningful names

Controlled
Sharing

• Device may store data

from many users

• Include metadata for access

control

Reliability
• Crash can occur during

updates

• Storage devices can fail

• Flash memory wears out

• Use transactions

• Use redundancy to detect and

correct failures

• Migrate data to even the wear

Nov 16, 2018 Sprenkle - CSCI330 36

• Use redundancy to detect and

correct failures

19

RAID
Redundant Array of Inexpensive Disks

Nov 16, 2018 Sprenkle - CSCI330 37

David Patterson Garth Gibson Randy Katz

Idea: Replace Small Number of Large Disks with

Large Number of Small Disks! (1988 Disks)

Nov 16, 2018 Sprenkle - CSCI330 38

Capacity

Volume
Power
Data Rate

I/O Rate
MTTF
Cost

IBM 3390K

20 GBytes
97 cu. ft.
3 KW

15 MB/s
600 I/Os/s
250 KHrs

$250K

IBM 3.5" 0061

320 MBytes
0.1 cu. ft.

11 W

1.5 MB/s
55 I/Os/s
50 KHrs

$2K

x70

23 GBytes
11 cu. ft.
1 KW

120 MB/s
3900 IOs/s

??? Hrs
$150K

Disk Arrays have potential for large data and
I/O rates, high MB per cu. ft., high MB per KW

9X

3X

8X

6X

But what about reliability?

Big, Expensive Small, Cheap Small, Cheap

20

Array Reliability

• Reliability of N disks = Reliability of 1 Disk�N
Ø 50,000 Hours � 70 disks = 700 hours

ØDisk system MTTF: drops from 6 yearsà1 month!

• Arrays (without redundancy) too unreliable to be
useful!

Nov 16, 2018 Sprenkle - CSCI330 39

Hot spares support reconstruction in parallel with access:
very high media availability can be achieved

Looking Ahead
• Project 4 due Monday after Thanksgiving

Nov 16, 2018 Sprenkle - CSCI330 40

