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Today
• File System Performance

ØDisk scheduling
• File System Reliability

ØRAID

Nov 16, 2018 Sprenkle - CSCI330 1

Review
• A disk is a bunch of blocks in which to store data

Ø How does FS give order and structure to those blocks?
• How do inodes handle the wide variety of file sizes?

Ø What are the benefits of this design?
• How are files within the file system structured?

Ø How are they structured in our OS project?  On most 
modern OSs?

• How does the user interact with the file system?
Ø What does the FS do in response?

• How can an OS handle multiple file systems within 
one name space?  
Ø What are the tradeoffs of this approach? 
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Review: Disk
• File System Metadata

Ø Format, size of blocks
Ø Stored in superblock
ØReplicated

• File Metadata
Ø Inode table

• Data Blocks

FS Metadata

File 
Metadata

Data Blocks
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Disk

Review: Block Pointers: Multi-Level Table

Direct: 10 x 1KB = 10KB
Single Indirect: 256 x 1KB = 256KB

Double Indirect: 256 x 256 x 1KB = 64MB
Triple Indirect: 256 x 256 x 256 x 1KB = 16GB

…

Block
Map

Data
Blocks

Single
Indirect
Block

Ptrs to
Data

blocks

Double
Indirect
BlockTriple

Indirect
Block

Ptrs to
Single

Indirect
BlocksPtrs to

Double
Indirect
Blocks

…

…

Direct 
pointers

Nov 16, 2018 Sprenkle - CSCI330 4



3

Review: Userspace Perspective
• Userspace processes make system calls to 

interact with files:

OS Kernel

Hardware

Kernel
Userspace

Text

Data

Stack

OS

Heap

User 
process P1

open(“file_x”, …)

File 
System

P1’s Descriptor Table
… …
3 file_x
… …
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Review: Userspace Perspective
• Userspace processes make system calls to 

interact with files:

OS Kernel

Hardware

Kernel
Userspace
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Data

Stack
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Heap

User 
process P1

File 
System

P1’s Descriptor Table

File descriptor (3)
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3 file_x
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Review: Userspace Perspective
• Userspace processes make system calls to 

interact with files:

OS Kernel

Hardware

Kernel
Userspace

Text

Data

Stack

OS

Heap

User 
process P1

File 
System

P1’s Descriptor Table

read(3, …)
write(3, …)
close(3)

This picture:
one process

one file system
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… …
3 file_x
… …

All subsequent call will use the fd

Review: Virtual File System (VFS) Layer
• Userspace processes make system calls to 

interact with files:

Hardware

Kernel
Userspace

Text

Data

Stack

OS

Heap

User 
process P1

File System 1

P1’s Descriptor Table

FS Requests

Nov 16, 2018 Sprenkle - CSCI330 8

… …
3 file_x
… …

File System 2 File System 3

Virtual File System Abstraction Layer
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VFS Layer
• Unifies the file name space and paths

ØPaths all start from common root (/) and are passed 
to VFS layer

ØVFS layer records which paths correspond to which 
FS

• VFS translates application requests to 
appropriate low-level FS calls
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File System 1 File System 2 File System 3

Virtual File System Abstraction Layer

Analyzing VFS Layer
• Benefits

Øuser doesn’t need to know the details about file 
systems

Ø easy expansion, removal of disks/file systems
• Drawback: layer adds overhead – could slow 

down performance
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Analyzing VFS Layer
• How can we mitigate that performance hit?

ØCaching!
Ø Inode Cache

• Store recently accessed inodes (file/directory info)
ØDirectory Cache

• Full directory path à inode id
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Virtual File System (VFS) Layer
• Userspace processes make system calls to 

interact with files:

Hardware

Kernel
Userspace

Text
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File System 1
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FS Requests
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… …
3 file_x
… …

File System 2 File System 3

Virtual File System Abstraction Layer

This picture:
one process

multiple file systems
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Multiple Concurrent Disk Requests
• Userspace processes make system calls to 

interact with files:

Hardware
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Userspace

Text
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… …
3 file_x
… …

Virtual File System Abstraction Layer

This picture:
multiple processes,

one file systemText

Data

Stack

OS

Heap

Text

Data

Stack

OS

Heap

Concurrent disk requests

Disk Scheduling
• Many sources of disk I/O requests

Ø OS
Ø System processes
Ø User processes

• I/O request includes input or output mode, disk 
address, memory address, number of sectors to 
transfer

• OS maintains queue of requests, per disk or device
Ø Idle disk can immediately work on I/O request
Ø Busy disk means request must queue
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Disk Scheduling

• Unlike CPU scheduling, disk characteristics vary 
significantly
ØCPUs have different ISAs, but they mostly behave the 

same

• For certain types of disks (solid state), FIFO might 
make a lot of sense (when targeting throughput):
Ø The disk has no moving parts, so the fastest thing to 

do is just issue requests immediately as they come in

ØMaybe merge adjacent requests

• For traditional spinning disks?
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Disk Scheduling

• The operating system is responsible for using 

hardware efficiently
Ø For the disk drives: having a fast access time and disk 

bandwidth

• Minimize seek time

Ø Seek time » seek distance

• Disk bandwidth is the total number of bytes 

transferred, divided by the total time between 

the first request for service and the completion 

of the last transfer
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Disk Arm
• Assume the disk arm can move back and forth 

from left to right and right to left.

Track0 Trackmax

Track0 Trackmax

Request @ 
Track 20

time

wider horizontal distance à
longer seek time
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Optimizing Disk Scheduling
• Goal: optimize performance

Ø First: disk bandwidth
ØAny other concerns?
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Disk Scheduling
• Like CPU scheduling, disk scheduling is a policy 

decision
Ø What should happen if multiple processes all want to 

access disk?
• Like CPU scheduling, the choice of metric influences 

the policy decision:
Ø Priority: if a process is important, give execute its 

requests first
Ø Wait time/latency, from request to completion
Ø Throughput: maximize the data transfer from the disk
Ø Fairness: give each process the same opportunity to 

access the disk
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In some cases, 
trade-off between last two.

Optimizing Disk Scheduling
• How can we optimize disk scheduling?
• What are possible algorithms?

ØWhat are their tradeoffs?
Ø For each algorithm, write down pros and cons

• What concerns/questions do we have in picking 
an algorithm?
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Track0 Trackmax

Request @ 
Track 20

time
What would your 
algorithms look like 
in this form?
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Disk Scheduling
• Several algorithms exist to schedule the servicing 

of disk I/O requests
• The analysis is true for one or many platters
• Consider a request queue

Ø 98, 183, 37, 122, 14, 124, 65, 67
ØHead pointer is at 53
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FCFS: First Come First Serve

Total head movement of 640 cylinders
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Analyze the performance of this algorithm, 
specifically here and in general.
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FCFS: First Come First Serve

Total head movement of 640 cylinders
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Performance is highly variable: 
depends on the order and track location of requests

Shortest Seek Time First (SSTF)
• SSTF selects request with the minimum seek 

time from the current head position
• SSTF scheduling is a form of SJF scheduling
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Shortest Seek Time First (SSTF)
• SSTF selects request with the minimum seek 

time from the current head position
• SSTF scheduling is a form of SJF scheduling
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Total head movement of 236 cylinders

Good: minimizes seek time
Bad: may cause starvation of some requests

SCAN Algorithm
• Sometimes called the elevator algorithm
• The disk arm starts at one end of the disk, and 

moves toward the other end
Ø services requests until it gets to the other end of the 

disk
Øhead movement is reversed and servicing continues
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SCAN Algorithm

Total head movement of 208 cylinders
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SCAN Algorithm

Total head movement of 208 cylinders
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Note: when head “turns”, likely not that many 
requests are right there.  The largest density 
is at other end of disk and wait the longest.  
So…



15

C-SCAN
• Provides a more uniform wait time than SCAN
• Head moves from one end of the disk to the 

other, servicing requests as it goes
ØWhen it reaches the other end, it immediately 

returns to the beginning of the disk, without 
servicing any requests on the return trip

• Treats the cylinders as a circular list that wraps 
around from the last cylinder to the first one
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C-SCAN
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C-LOOK
• LOOK a version of SCAN, C-LOOK a version of C-

SCAN
• Arm only goes as far as the last request in each 

direction, then reverses direction immediately, 
without first going all the way to the end of the 
disk 
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C-LOOK
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Linux’s Default Scheduler: CFQ

• Completely Fair Queueing (CFQ)
ØNot to be confused with the “completely fair 

scheduler (CFS)” for the CPU…

Disk dispatch queue
P3

P2

P1

PN

…

• Keep a disk request queue for each process

• Move requests from process queues to 
dispatch queue in round-robin fashion (if 
equal priority)
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Linux’s Default Scheduler: CFQ

• Completely Fair Queueing (CFQ)
ØNot to be confused with the “completely fair 

scheduler (CFS)” for the CPU…
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• Keep a disk request queue for each process

• Move requests from process queues to 
dispatch queue in round-robin fashion (if 
equal priority)
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Can reorder these requests 
to improve disk performance 
within some constraints
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Selecting a Disk-Scheduling Algorithm
• D-S algorithm should be written as a separate module of 

the operating system
Ø Can be replaced with a different algorithm if necessary

• Performance depends on the number and types of 
requests
Ø If only one request in queue – becomes FCFS

• SCAN is common
Ø Less computational cost

• SCAN and C-SCAN perform better for systems with heavy 
load on the disk
Ø Less starvation

• Add a deadline scheduler
Ø if a request hasn’t been fulfilled within some period of time, 

service it
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How Persistent Storage Affects OS Design

Goal Physical Characteristics Design Implication

High
Performance

• Large cost to initiate I/O

• Organize storage to access 

data in large sequential units

• Use caching

Named Data
• Large capacity

• Survives crashes

• Shared across programs

• Support files and directories 

with meaningful names

Controlled 
Sharing

• Device may store data 

from many users

• Include metadata for access 

control

Reliability
• Crash can occur during 

updates

• Storage devices can fail

• Flash memory wears out

• Use transactions

• Use redundancy to detect and 

correct failures

• Migrate data to even the wear
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• Use redundancy to detect and 

correct failures
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RAID
Redundant Array of Inexpensive Disks
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David Patterson Garth Gibson Randy Katz

Idea: Replace Small Number of Large Disks with 

Large Number of Small Disks! (1988 Disks)
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Capacity 

Volume 
Power
Data Rate 

I/O Rate   
MTTF  
Cost

IBM 3390K

20 GBytes
97 cu. ft.
3 KW

15 MB/s
600 I/Os/s
250 KHrs

$250K

IBM 3.5" 0061

320 MBytes
0.1 cu. ft.

11 W

1.5 MB/s
55 I/Os/s
50 KHrs

$2K

x70

23 GBytes
11 cu. ft.
1 KW

120 MB/s
3900 IOs/s

??? Hrs
$150K

Disk Arrays have potential for large data and 
I/O rates, high MB per cu. ft., high MB per KW

9X

3X

8X

6X

But what about reliability?

Big, Expensive Small, Cheap Small, Cheap
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Array Reliability

• Reliability of N disks = Reliability of 1 Disk�N
Ø 50,000 Hours � 70 disks = 700 hours

ØDisk system MTTF: drops from 6 yearsà1 month!

• Arrays (without redundancy) too unreliable to be 
useful!
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Hot spares support reconstruction in parallel with access: 
very high media availability can be achieved

Looking Ahead
• Project 4 due Monday after Thanksgiving
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