
1

Today
• File System Reliability

ØRAID
• Memory Management

ØVirtual Memory

Nov 26, 2018 Sprenkle - CSCI330 1

I just spent 20 minutes trying to checkout
with my Walmart cart online to have it not
work on a door buster item.
I thought maybe it’s an off my one bug so I
added a can of spam to the order.
Yep no problem checking out then.

Review: Spinning Disk Scheduling
• Why does disk scheduling matter?
• What are the costs in disk scheduling?
• What are our goals for disk scheduling?
• What are some algorithms for disk scheduling?

ØWhat are their tradeoffs?

Nov 26, 2018 Sprenkle - CSCI330 2

2

Review: Disk Scheduling
• The operating system is responsible for using

hardware efficiently
Ø For the disk drives: having a fast access time and disk

bandwidth
• Minimize seek time

Ø Seek time » seek distance
• Disk bandwidth is the total number of bytes

transferred, divided by the total time between
the first request for service and the completion
of the last transfer

Nov 26, 2018 Sprenkle - CSCI330 3

Review: Disk Arm
• Assume the disk arm can move back and forth

from left to right and right to left.

Track0 Trackmax

Track0 Trackmax

Request @
Track 20

time

wider horizontal distance à
longer seek time

Nov 26, 2018 Sprenkle - CSCI330 4

Note we didn’t talk about rotation time; that’s hard for the OS to calculate

3

Review: Disk Scheduling

• Like CPU scheduling, disk scheduling is a policy
decision

Ø What should happen if multiple processes all want to
access disk?

• Like CPU scheduling, the choice of metric influences
the policy decision:
Ø Priority: if a process is important, give execute its

requests first

Ø Wait time/latency, from request to completion

Ø Throughput: maximize the data transfer from the disk

Ø Fairness: give each process the same opportunity to
access the disk

Nov 26, 2018 Sprenkle - CSCI330 5

In some cases,

trade-off between last two.

Review: Linux’s Default Scheduler: CFQ
• Completely Fair Queueing (CFQ)

ØNot to be confused with the “completely fair
scheduler (CFS)” for the CPU…

Disk dispatch queue
P3

P2

P1

PN

…

• Keep a disk request queue for each process

• Move requests from process queues to
dispatch queue in round-robin fashion (if
equal priority)

Nov 26, 2018 Sprenkle - CSCI330 6

Can reorder these requests
to improve disk performance
within some constraints

4

Review:

Selecting a Disk-Scheduling Algorithm
• D-S algorithm should be written as a separate module of

the operating system

Ø Can be replaced with a different algorithm if necessary

• Performance depends on the number and types of
requests

Ø If only one request in queue – becomes FCFS

• SCAN is common

Ø Less computational cost

• SCAN and C-SCAN perform better for systems with heavy
load on the disk

Ø Less starvation

• Add a deadline scheduler

Ø if a request hasn’t been fulfilled within some period of time,
service it

Nov 26, 2018 Sprenkle - CSCI330 7

RAID
Redundant Array of Inexpensive Disks

Nov 26, 2018 Sprenkle - CSCI330 8

David Patterson Garth Gibson Randy Katz

5

Idea: Replace Small Number of Large Disks with

Large Number of Small Disks! (1988 Disks)

Nov 26, 2018 Sprenkle - CSCI330 9

Capacity

Volume
Power
Data Rate

I/O Rate
MTTF
Cost

IBM 3390K

20 GBytes
97 cu. ft.
3 KW

15 MB/s
600 I/Os/s
250 KHrs

$250K

IBM 3.5" 0061

320 MBytes
0.1 cu. ft.

11 W

1.5 MB/s
55 I/Os/s
50 KHrs

$2K

x70

23 GBytes
11 cu. ft.
1 KW

120 MB/s
3900 IOs/s

??? Hrs
$150K

Disk Arrays have potential for large data and
I/O rates, high MB per cu. ft., high MB per KW

9X

3X

8X

6X

But what about reliability?

Big, Expensive Small, Cheap Small, Cheap

Array Reliability

• Reliability of N disks = Reliability of 1 Disk�N
Ø 50,000 Hours � 70 disks = 700 hours

ØDisk system MTTF: drops from 6 yearsà1 month!

• Arrays (without redundancy) too unreliable to be
useful!

Nov 26, 2018 Sprenkle - CSCI330 10

Hot spares support reconstruction in parallel with access:
very high media availability can be achieved

6

Redundant Arrays of (Inexpensive
àIndependent) Disks (RAID)

• Key idea: files are striped across multiple disks
ØCan do reads in parallel on the multiple disks

• Redundancy yields high data availability
ØAvailability: service still provided to user, even if

some components failed

Nov 26, 2018 Sprenkle - CSCI330 11

Redundant Arrays of (Inexpensive
àIndependent) Disks (RAID)

• Disks will still fail
• Contents reconstructed from data redundantly

stored in the array
ØCapacity penalty to store redundant info
ØBandwidth penalty to update redundant info

• Multiple schemes
ØProvide different balance between data reliability

and input/output performance

Nov 26, 2018 Sprenkle - CSCI330 12

7

Redundant Arrays of Independent Disks
RAID 0: Striping

• Stripe data at the block level
across multiple disks

Nov 26, 2018 Sprenkle - CSCI330 13

What are the outcomes?
• Expected behavior on read, write?
• On failure?

A C E B D F

A B C D E F

Redundant Arrays of Independent Disks

RAID 0: Striping

• Stripe data at the block level

across multiple disks

• High read and write bandwidth

• Not a true RAID since no

redundancy

• Failure of any one drive will

cause the entire array to become

unavailable

Nov 26, 2018 Sprenkle - CSCI330 14

A C E B D F

A B C D E F

8

Redundant Arrays of Independent Disks
RAID 1: Disk Mirroring/Shadowing

• Each disk is fully duplicated onto its mirror

Nov 26, 2018 Sprenkle - CSCI330 15

recovery
group

What are the outcomes?
• Expected behavior on read, write?
• On failure?

Redundant Arrays of Independent Disks
RAID 1: Disk Mirroring/Shadowing

• Each disk is fully duplicated onto its mirror
Ø Very high availability can be achieved

• Bandwidth sacrifice on write:
Ø Logical write = two physical writes
Ø Reads may be optimized

• Most expensive solution: 100% capacity overhead

Nov 26, 2018 Sprenkle - CSCI330 16

recovery
group

Prefer reliability & performance over low data storage

9

RAID-I (1989)

• Consisted of a Sun 4/280
workstation with
Ø 128 MB of DRAM

Ø 4 dual-string SCSI controllers

Ø 28 5.25-inch SCSI disks

Ø specialized disk striping software

Nov 26, 2018 Sprenkle - CSCI330 17

(RAID 2 not interesting, so skip…
involves Hamming codes)

Redundant Array of Independent Disks
RAID 3: Parity Disk

Nov 26, 2018 Sprenkle - CSCI330 18

P

10010011
10101101
10010111
. . .

logical record 1
0
0
1
0
0
1
1

1
0
1
0
1
1
0
1

1
0
0
1
0
1
1
1

1
0
1
0
1
0
0
1

• P contains sum of other
disks per stripe mod 2
(parity)

• If disk fails, subtract P
from sum of other
disks to find missing
information

Striped physical
records

10

Redundant Array of Independent Disks
RAID 3: Parity Disk

Nov 26, 2018 Sprenkle - CSCI330 19

P

10010011
10101101
10010111
. . .

logical record 1
0
0
1
0
0
1
1

1
0
1
0
1
1
0
1

1
0
0
1
0
1
1
1

1
0
1
0
1
0
0
1

How can we
calculate parity?

Consider a
new write

Striped physical
records

Calculating Parity?
• Option 1: read all data disks, create new sum,

and write to Parity Disk
ØRead each disk
Ø 2 writes (new data, parity)

• Option 2: since P has old sum, compare old data
to new data, add the difference to P
Ø 2 reads
Ø 2 writes

Nov 26, 2018 Sprenkle - CSCI330 20

11

Problems of Disk Arrays:
Small Writes

Nov 26, 2018 21

D0 D1 D2 D3 PD0'

D0'

new
data

old
data

RAID-3: Small Write Algorithm

1 Logical Write = 2 Physical Reads + 2 Physical Writes

Sprenkle - CSCI330

Before

After

Problems of Disk Arrays:
Small Writes

Nov 26, 2018 22

D0 D1 D2 D3 PD0'

+

+

D0' D1 D2 D3 P'

new
data

old
data

old
parity

XOR

XOR

1. Read 2. Read

3. Write 4. Write

RAID-3: Small Write Algorithm

1 Logical Write = 2 Physical Reads + 2 Physical Writes

Sprenkle - CSCI330

Before

After

12

RAID 3
• Sum computed across recovery group to protect

against hard disk failures, stored in P disk
• Logically, a single high-capacity, high-transfer-

rate disk: good for large transfers
• But byte-level striping is bad for most files

Ø all disks involved, even for small writes
• Parity disk is still a bottleneck

Nov 26, 2018 Sprenkle - CSCI330 23

Inspiration for RAID 4
• RAID 3 stripes data at the byte level

ØRAID 3 relies on parity disk to discover errors on read
ØBut every sector on disk has an error detection field

• Idea: Block-level striping
ØRely on error detection field to catch errors on read,

not on the parity disk
• Goals:

ØAllow independent reads to different disks
simultaneously

Ø Increase read I/O rate since only one disk is accessed
rather than all disks for a small read

Nov 26, 2018 Sprenkle - CSCI330 24

13

Redundant Arrays of Independent Disks
RAID 4: High I/O Rate Parity

Nov 26, 2018 25

D0 D1 D2 D3 P

D4 D5 D6 PD7

D8 D9 PD10 D11

D12 PD13 D14 D15

PD16 D17 D18 D19

D20 D21 D22 D23 P
.
.

.

.
.
.

.

.
.
.

Disk Columns
Increasing

Logical
Disk

Address

Stripe

Insides of 5
disks

Example:
small reads

D0 & D5,
large write
D12-D15

Sprenkle - CSCI330

Inspiration for RAID 5
• RAID 4 works well for small reads

• Small writes are still limited by Parity Disk:
ØWrite to D0, D5, both also write to P disk

Nov 26, 2018 Sprenkle - CSCI330 26

D0 D1 D2 D3 P

D4 D5 D6 PD7

bottleneck

14

RAID 5
• RAID 4 works well for small reads
• Small writes are still limited by Parity Disk:

ØWrite to D0, D5, both also write to P disk
• Idea: Rotate the Parity disk

Nov 26, 2018 Sprenkle - CSCI330 27

D0 D1 D2 D3 P

D4 D5 D6 P D7

Result: same disk
isn’t a bottleneck

for all writes

Redundant Arrays of Independent Disks
RAID 5: High I/O Rate Interleaved Parity

Nov 26, 2018 28

D0 D1 D2 D3 P

D4 D5 D6 P D7

D8 D9 P D10 D11

D12 P D13 D14 D15

P D16 D17 D18 D19

D20 D21 D22 D23 P
.
.

.

.
.
.

.

.
.
.

Disk Columns

Increasing
Logical
Disk

AddressesIndependent
writes possible

because of
interleaved parity

Example:
write to D0, D5

Sprenkle - CSCI330

15

RAID-10 (0+1)

• Striping + mirroring
Ø Stripes (RAID-0) across reliable logical disks, implemented as

mirrored disks (RAID-1)

Nov 26, 2018 Sprenkle - CSCI330 29

D0 D0 D1 D1

What’s the impact?
(What are the costs?)

RAID-10 (0+1)

• Striping + mirroring
Ø Stripes (RAID-0) across reliable logical disks, implemented as

mirrored disks (RAID-1)

• High storage overhead/cost
• For small write-intensive apps, may be better than

RAID-5
Ø Write data twice but no reads or XORs required

Nov 26, 2018 Sprenkle - CSCI330 30

D0 D0 D1 D1

16

RAID-50
• Stripes (RAID-0) across groups of disks with

block interleaved distributed parity (RAID-5)
ØWrite is striped (RAID-0) to two sets of disks

implemented RAID-5
• Increased write performance and better data

protection

Nov 26, 2018 Sprenkle - CSCI330 31

Who is in control?

• Hardware

Ø Pros:

• Tends to be reliable

Ø hardware implementers

test

• Offloads parity

computation from CPU

Ø Cons

• Dependent on card for

recovery (replacements?)

• Must buy card (for the PCI

bus)

• Software

Ø Pros

• Other OS instances might

be able to recover

• No additional cost

Ø Part of OS

Ø Cons

• Software has bugs

• Ties up CPU to compute

parity

Nov 26, 2018 Sprenkle - CSCI330 32

17

RAID Weaknesses
• Disks tend to be the same age

Ø Similar failure times
• Inflexible organization

ØDisks, file system requirements change over time
• Rebuild time is expensive

ØDisk capacity has increased
Ø Transfer speed has increased a little
Ø Error rates decreased a little

Nov 26, 2018 Sprenkle - CSCI330 33

MEMORY MANAGEMENT
Another process resource

Nov 26, 2018 Sprenkle - CSCI330 34

18

Memory Management
• Basic hardware capabilities

Ø Logical vs. Physical addresses
ØAddress binding

• Multiprogramming and Memory
• Virtual Memory

Nov 26, 2018 Sprenkle - CSCI330 35

Ties in with Project 5: Processes & Multiprogramming

Memory

• Reality

Ø there’s only so much memory

to go around

Ø no two processes should use

the same (physical) memory

addresses.

• Abstraction goal:

make every process think it

has the same memory layout

Process 1

Process 3

Process 3

OS

Process 2

Process 1

Text

Data

Stack

OS

Heap

Drab and
ugly

Colorful and
happy

Physical Memory

Abstraction

Nov 26, 2018 Sprenkle - CSCI330 36

19

Memory Terminology

Process 1
Process 3

Process 3

OS

Process 2

Process 1

Physical Memory:
The contents of the hardware
(RAM) memory. Managed by OS.
Only one of these for the entire
machine!

Virtual (logical) Memory:
The abstract view of memory
given to processes.
Each process gets an
independent view of the memory

Address Space:
Range of addresses
for a region of
memory.
The set of available
storage locations.

0x0

0x…
(Determined by amount
of installed RAM.)

0x0

0xFFFFFFFFVirtual address
space (VAS):

fixed size (CPU)

Text
Data

Stack

OS

Heap

Text
Data

Stack

OS

Heap

Text
Data

Stack

OS

Heap

Nov 26, 2018 Sprenkle - CSCI330 37

Address Translation: Wish List

• Map virtual addresses
to physical addresses

Nov 26, 2018 Sprenkle - CSCI330 40

Process 1
Process 3

OS

Process 2

Process 1

Text
Data

Stack

OS

Heap

20

Address Translation

• Virtual addresses must be translated to physical

addresses

Nov 26, 2018 Sprenkle - CSCI330 41

Process 1

Process 3

OS

Process 2

Process 1

Text

Data

Stack

OS

Heap

Translation is hard.

Assume a“black box” mechanism does it.

• Is logical addressing worth it/necessary?

• What do we want it to provide for us?

How does each benefit from having a
logical memory abstraction?

• The user
• The programmer
• The compiler
• The OS / OS designer
• The hardware / hardware designer

Nov 26, 2018 Sprenkle - CSCI330 42

Process 1
Process 3

Process 3

OS

Process 2

Process 1

Text
Data

Stack

OS

Heap

21

Looking Ahead
• Project 4 due *tomorrow* night

Nov 26, 2018 Sprenkle - CSCI330 43

