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Today
• File System Reliability

ØRAID
• Memory Management

ØVirtual Memory
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I just spent 20 minutes trying to checkout 
with my Walmart cart online to have it not 
work on a door buster item. 
I thought maybe it’s an off my one bug so I 
added a can of spam to the order. 
Yep no problem checking out then.

Review: Spinning Disk Scheduling
• Why does disk scheduling matter?
• What are the costs in disk scheduling?
• What are our goals for disk scheduling?
• What are some algorithms for disk scheduling?

ØWhat are their tradeoffs?
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Review: Disk Scheduling
• The operating system is responsible for using 

hardware efficiently
Ø For the disk drives: having a fast access time and disk 

bandwidth
• Minimize seek time

Ø Seek time » seek distance
• Disk bandwidth is the total number of bytes 

transferred, divided by the total time between 
the first request for service and the completion 
of the last transfer
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Review: Disk Arm
• Assume the disk arm can move back and forth 

from left to right and right to left.

Track0 Trackmax

Track0 Trackmax

Request @ 
Track 20

time

wider horizontal distance à
longer seek time
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Note we didn’t talk about rotation time; that’s hard for the OS to calculate
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Review: Disk Scheduling

• Like CPU scheduling, disk scheduling is a policy 
decision

Ø What should happen if multiple processes all want to 
access disk?

• Like CPU scheduling, the choice of metric influences 
the policy decision:
Ø Priority: if a process is important, give execute its 

requests first

Ø Wait time/latency, from request to completion

Ø Throughput: maximize the data transfer from the disk

Ø Fairness: give each process the same opportunity to 
access the disk
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In some cases, 

trade-off between last two.

Review: Linux’s Default Scheduler: CFQ
• Completely Fair Queueing (CFQ)

ØNot to be confused with the “completely fair 
scheduler (CFS)” for the CPU…

Disk dispatch queue
P3

P2

P1

PN

…

• Keep a disk request queue for each process

• Move requests from process queues to 
dispatch queue in round-robin fashion (if 
equal priority)
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Can reorder these requests 
to improve disk performance 
within some constraints
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Review: 

Selecting a Disk-Scheduling Algorithm
• D-S algorithm should be written as a separate module of 

the operating system

Ø Can be replaced with a different algorithm if necessary

• Performance depends on the number and types of 
requests

Ø If only one request in queue – becomes FCFS

• SCAN is common

Ø Less computational cost

• SCAN and C-SCAN perform better for systems with heavy 
load on the disk

Ø Less starvation

• Add a deadline scheduler

Ø if a request hasn’t been fulfilled within some period of time, 
service it
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RAID
Redundant Array of Inexpensive Disks
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David Patterson Garth Gibson Randy Katz
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Idea: Replace Small Number of Large Disks with 

Large Number of Small Disks! (1988 Disks)
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Capacity 

Volume 
Power
Data Rate 

I/O Rate   
MTTF  
Cost

IBM 3390K

20 GBytes
97 cu. ft.
3 KW

15 MB/s
600 I/Os/s
250 KHrs

$250K

IBM 3.5" 0061

320 MBytes
0.1 cu. ft.

11 W

1.5 MB/s
55 I/Os/s
50 KHrs

$2K

x70

23 GBytes
11 cu. ft.
1 KW

120 MB/s
3900 IOs/s

??? Hrs
$150K

Disk Arrays have potential for large data and 
I/O rates, high MB per cu. ft., high MB per KW

9X

3X

8X

6X

But what about reliability?

Big, Expensive Small, Cheap Small, Cheap

Array Reliability

• Reliability of N disks = Reliability of 1 Disk�N
Ø 50,000 Hours � 70 disks = 700 hours

ØDisk system MTTF: drops from 6 yearsà1 month!

• Arrays (without redundancy) too unreliable to be 
useful!
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Hot spares support reconstruction in parallel with access: 
very high media availability can be achieved
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Redundant Arrays of (Inexpensive 
àIndependent) Disks (RAID)

• Key idea: files are striped across multiple disks
ØCan do reads in parallel on the multiple disks

• Redundancy yields high data availability
ØAvailability: service still provided to user, even if 

some components failed
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Redundant Arrays of (Inexpensive 
àIndependent) Disks (RAID)

• Disks will still fail
• Contents reconstructed from data redundantly 

stored in the array
ØCapacity penalty to store redundant info
ØBandwidth penalty to update redundant info

• Multiple schemes
ØProvide different balance between data reliability 

and input/output performance

Nov 26, 2018 Sprenkle - CSCI330 12



7

Redundant Arrays of Independent Disks
RAID 0: Striping

• Stripe data at the block level 
across multiple disks

Nov 26, 2018 Sprenkle - CSCI330 13

What are the outcomes?
• Expected behavior on read, write?
• On failure?

A C E B D F

A B C D E F

Redundant Arrays of Independent Disks

RAID 0: Striping

• Stripe data at the block level 

across multiple disks

• High read and write bandwidth

• Not a true RAID since no 

redundancy

• Failure of any one drive will 

cause the entire array to become 

unavailable
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A C E B D F

A B C D E F
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Redundant Arrays of Independent Disks
RAID 1: Disk Mirroring/Shadowing

• Each disk is fully duplicated onto its mirror
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recovery
group

What are the outcomes?
• Expected behavior on read, write?
• On failure?

Redundant Arrays of Independent Disks
RAID 1: Disk Mirroring/Shadowing

• Each disk is fully duplicated onto its mirror
Ø Very high availability can be achieved

• Bandwidth sacrifice on write:
Ø Logical write = two physical writes
Ø Reads may be optimized

• Most expensive solution: 100% capacity overhead
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recovery
group

Prefer reliability & performance over low data storage
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RAID-I (1989)

• Consisted of a Sun 4/280 
workstation with 
Ø 128 MB of DRAM

Ø 4 dual-string SCSI controllers

Ø 28 5.25-inch SCSI disks 

Ø specialized disk striping software
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(RAID 2 not interesting, so skip…
involves Hamming codes)

Redundant Array of Independent Disks
RAID 3: Parity Disk
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P

10010011
10101101
10010111
. . .

logical record 1
0
0
1
0
0
1
1

1
0
1
0
1
1
0
1

1
0
0
1
0
1
1
1

1
0
1
0
1
0
0
1

• P contains sum of other  
disks per stripe mod 2 
(parity)

• If disk fails, subtract P 
from sum of other 
disks to find missing 
information

Striped physical
records
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Redundant Array of Independent Disks
RAID 3: Parity Disk
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P

10010011
10101101
10010111
. . .

logical record 1
0
0
1
0
0
1
1

1
0
1
0
1
1
0
1

1
0
0
1
0
1
1
1

1
0
1
0
1
0
0
1

How can we 
calculate parity?

Consider a
new write

Striped physical
records

Calculating Parity?
• Option 1: read all data disks, create new sum, 

and write to Parity Disk
ØRead each disk
Ø 2 writes (new data, parity)

• Option 2: since P has old sum, compare old data 
to new data, add the difference to P
Ø 2 reads
Ø 2 writes
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Problems of Disk Arrays: 
Small Writes
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D0 D1 D2 D3 PD0'

D0'

new
data

old
data

RAID-3: Small Write Algorithm

1 Logical Write = 2 Physical Reads + 2  Physical Writes
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Before

After

Problems of Disk Arrays: 
Small Writes
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D0 D1 D2 D3 PD0'

+

+

D0' D1 D2 D3 P'

new
data

old
data

old 
parity

XOR

XOR

1. Read 2. Read

3. Write 4. Write

RAID-3: Small Write Algorithm

1 Logical Write = 2 Physical Reads + 2  Physical Writes
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Before

After
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RAID 3
• Sum computed across recovery group to protect 

against hard disk failures, stored in P disk
• Logically, a single high-capacity, high-transfer-

rate disk: good for large transfers
• But byte-level striping is bad for most files

Ø all disks involved, even for small writes
• Parity disk is still a bottleneck 
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Inspiration for RAID 4
• RAID 3 stripes data at the byte level

ØRAID 3 relies on parity disk to discover errors on read
ØBut every sector on disk has an error detection field

• Idea: Block-level striping
ØRely on error detection field to catch errors on read, 

not on the parity disk
• Goals:

ØAllow independent reads to different disks 
simultaneously

Ø Increase read I/O rate since only one disk is accessed 
rather than all disks for a small read
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Redundant Arrays of Independent Disks 
RAID 4: High I/O Rate Parity
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D0 D1 D2 D3 P

D4 D5 D6 PD7

D8 D9 PD10 D11

D12 PD13 D14 D15

PD16 D17 D18 D19

D20 D21 D22 D23 P
.
.

.

.
.
.

.

.
.
.

Disk Columns
Increasing

Logical
Disk 

Address

Stripe

Insides of 5 
disks

Example:
small reads 

D0 & D5, 
large write 
D12-D15
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Inspiration for RAID 5
• RAID 4 works well for small reads

• Small writes are still limited by Parity Disk: 
ØWrite to D0, D5, both also write to P disk 
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D0 D1 D2 D3 P

D4 D5 D6 PD7

bottleneck
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RAID 5
• RAID 4 works well for small reads
• Small writes are still limited by Parity Disk: 

ØWrite to D0, D5, both also write to P disk 
• Idea: Rotate the Parity disk

Nov 26, 2018 Sprenkle - CSCI330 27

D0 D1 D2 D3 P

D4 D5 D6 P D7

Result: same disk 
isn’t a bottleneck 

for all writes

Redundant Arrays of Independent Disks 
RAID 5: High I/O Rate Interleaved Parity
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D0 D1 D2 D3 P

D4 D5 D6 P D7

D8 D9 P D10 D11

D12 P D13 D14 D15

P D16 D17 D18 D19

D20 D21 D22 D23 P
.
.

.

.
.
.

.

.
.
.

Disk Columns

Increasing
Logical
Disk 

AddressesIndependent 
writes possible 

because of
interleaved parity

Example: 
write to D0, D5
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RAID-10 (0+1)

• Striping + mirroring
Ø Stripes (RAID-0) across reliable logical disks, implemented as 

mirrored disks (RAID-1)
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D0 D0 D1 D1

What’s the impact?
(What are the costs?)

RAID-10 (0+1)

• Striping + mirroring
Ø Stripes (RAID-0) across reliable logical disks, implemented as 

mirrored disks (RAID-1)

• High storage overhead/cost
• For small write-intensive apps, may be better than 

RAID-5 
Ø Write data twice but no reads or XORs required
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D0 D0 D1 D1
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RAID-50
• Stripes (RAID-0)  across groups of disks with 

block interleaved distributed parity (RAID-5)
ØWrite is striped (RAID-0) to two sets of disks 

implemented RAID-5
• Increased write performance and better data 

protection
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Who is in control?

• Hardware

Ø Pros:

• Tends to be reliable

Ø hardware implementers 

test

• Offloads parity 

computation from CPU

Ø Cons

• Dependent on card for 

recovery (replacements?)

• Must buy card (for the PCI 

bus)

• Software

Ø Pros

• Other OS instances might 

be able to recover

• No additional cost

Ø Part of OS

Ø Cons

• Software has bugs

• Ties up CPU to compute 

parity
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RAID Weaknesses
• Disks tend to be the same age

Ø Similar failure times
• Inflexible organization

ØDisks, file system requirements change over time
• Rebuild time is expensive

ØDisk capacity has increased
Ø Transfer speed has increased a little
Ø Error rates decreased a little
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MEMORY MANAGEMENT
Another process resource
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Memory Management
• Basic hardware capabilities

Ø Logical vs. Physical addresses 
ØAddress binding 

• Multiprogramming and Memory
• Virtual Memory 
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Ties in with Project 5: Processes & Multiprogramming 

Memory

• Reality

Ø there’s only so much memory 

to go around

Ø no two processes should use 

the same (physical) memory 

addresses.

• Abstraction goal: 

make every process think it 

has the same memory layout

Process 1

Process 3

Process 3

OS

Process 2

Process 1

Text

Data

Stack

OS

Heap

Drab and 
ugly

Colorful and 
happy

Physical Memory

Abstraction
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Memory Terminology

Process 1
Process 3

Process 3

OS

Process 2

Process 1

Physical Memory: 
The contents of the hardware 
(RAM) memory.  Managed by OS.  
Only one of these for the entire 
machine!

Virtual (logical) Memory: 
The abstract view of memory 
given to processes.  
Each process gets an 
independent view of the memory

Address Space:
Range of addresses 
for a region of 
memory.
The set of available 
storage locations.

0x0

0x…
(Determined by amount 
of installed RAM.)

0x0

0xFFFFFFFFVirtual address 
space (VAS): 

fixed size (CPU)

Text
Data

Stack

OS

Heap

Text
Data

Stack

OS

Heap

Text
Data

Stack

OS

Heap
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Address Translation: Wish List

• Map virtual addresses 
to physical addresses
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Process 1
Process 3

OS

Process 2

Process 1

Text
Data

Stack

OS

Heap
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Address Translation

• Virtual addresses must be translated to physical 

addresses
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Process 1

Process 3

OS

Process 2

Process 1

Text

Data

Stack

OS

Heap

Translation is hard.

Assume a“black box” mechanism does it.

• Is logical addressing worth it/necessary?

• What do we want it to provide for us?

How does each benefit from having a 
logical memory abstraction?

• The user
• The programmer
• The compiler
• The OS / OS designer
• The hardware / hardware designer
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Process 1
Process 3

Process 3

OS

Process 2

Process 1

Text
Data

Stack

OS

Heap
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Looking Ahead
• Project 4 due *tomorrow* night

Nov 26, 2018 Sprenkle - CSCI330 43


