
1

Today
• Memory Management

ØVirtual Memory Motivation and Requirements
• Project 5

Nov 28, 2018 Sprenkle - CSCI330 1

Review
• What is RAID?

ØWhat is its motivation?
ØWhat are its goals?
ØWhat are some RAID levels?

• What techniques do they use?
• Benefits? Tradeoffs?

• What is the abstraction that virtual memory
provides?

Nov 28, 2018 Sprenkle - CSCI330 2

2

Review: RAID
• Disks fail

ØWant them to be more reliable
• Add redundant data to allow recovery in case of

failure
• Improve performance with parallel reads/writes
• Costs/Tradeoffs:

ØCapacity overhead
ØBandwidth overhead

• Approaches used:
Ø Striping, mirroring, parity disk

Nov 28, 2018 Sprenkle - CSCI330 3

Review: Memory
• Reality

Ø there’s only so much memory
to go around

Ø no two processes should use
the same (physical) memory
addresses.

• Abstraction goal:
make every process think it
has the same memory layout

Process 1
Process 3

Process 3

OS

Process 2

Process 1

Text
Data

Stack

OS

Heap

Drab and
ugly

Colorful and
happy

Physical Memory

Abstraction

Nov 28, 2018 Sprenkle - CSCI330 4

3

Review: Memory Terminology

Process 1
Process 3

Process 3

OS

Process 2

Process 1

Physical Memory:
The contents of the hardware
(RAM) memory. Managed by OS.
Only one of these for the entire
machine!

Virtual (logical) Memory:
The abstract view of memory
given to processes.
Each process gets an
independent view of the memory

Address Space:
Range of addresses
for a region of
memory.
The set of available
storage locations.

0x0

0x…
(Determined by amount
of installed RAM.)

0x0

0xFFFFFFFFVirtual address
space (VAS):

fixed size (CPU)

Text
Data

Stack

OS

Heap

Text
Data

Stack

OS

Heap

Text
Data

Stack

OS

Heap

Nov 28, 2018 Sprenkle - CSCI330 5

Review: Address Translation
• Virtual addresses must be translated to physical

addresses

Nov 28, 2018 Sprenkle - CSCI330 6

Process 1
Process 3

OS

Process 2

Process 1

Text
Data

Stack

OS

Heap

Translation is a lot of work.
Assume a“black box” mechanism does it.

• Is logical addressing worth it/necessary?
• What do we want it to provide for us?

4

User Perspective
• Average user doesn’t care about “address

spaces” or memory sizes
• User might say:

Ø I want all of my programs to be able to run at the
same time

Ø I don’t want to worry about running out of memory
• If OS has no virtual memory:

ØBest we can do is give them all of the physical
memory

Ø Is that enough?
• VAS size can be larger than PAS…

Nov 28, 2018 Sprenkle - CSCI330 7

Multiprogramming, Revisited
• Multiple programs available to the machine,

even if you only have one CPU core that can
execute them.

• How to give the illusion: context switch quickly
between processes on the CPU

Nov 28, 2018 Sprenkle - CSCI330 8

5

Multiprogramming, Revisited

• Can we do something analogous to a context
switch for process memory?

A.Yes (how? Where will process memory be
stored?)

B.No (why not?)
C.It depends (on what?)

Nov 28, 2018 Sprenkle - CSCI330 9

Local secondary storage (disk)

Larger
Slower
Cheaper
per byte

Remote secondary storage
(tapes, Web servers / Internet)

~50 - 100 M cycles to access

CPU:
On-Chip
Storage

Smaller
Faster
Costlier
per byte

Physical/Main memory
(DRAM)

~100 cycles to access

CPU
instrs

can
directly
access

Slower than local
disk to access

Registers 1 cycle to access

Cache(s)
SRAM

L1, L2, L3 Cache
~10’s of cycles to access

Flash SSD

The Memory Hierarchy

Nov 28, 2018 Sprenkle - CSCI330 10

6

Memory Management
• Processor can only directly use data from registers

Ø Need to move data closer (memory)
• Ideally, programmers want memory that is large,

fast, and non-volatile
• Memory hierarchy

Ø Small amount of fast, expensive memory – cache
Ø Some medium-speed, medium-price – main memory
Ø Gigabytes of slow, cheap disk storage – swap/virtual

memory
• Multiprogramming makes memory management

trickier

Nov 28, 2018 Sprenkle - CSCI330 11

Multiprogramming, Revisited
• Can we do something analogous to a context

switch for process memory?
Ø Suppose disk transfer rate is 100 MB/s
Ø “switching” a 1 MB process would take 10 ms (+ disk

seek time)
ØCPU context switch: approx. 10 – 50 µs
ØMoving that 1 MB would make context switch take

200 – 1000 times longer!

Conclusion: We can’t swap entirety of process memory
on a context switch. It needs to be in memory already.

Nov 28, 2018 Sprenkle - CSCI330 12

7

Multiprogramming Requirements
• Multiple processes will be in memory at the

same time
Ø Too costly to switch otherwise

• Processes should not be able to read/write each
other’s memory
Øunless we approve them to, with shared memory

Nov 28, 2018 Sprenkle - CSCI330 13

Address Translation: Wish List

• Map virtual addresses
to physical addresses

• Allow multiple
processes to be in
memory at once, but
isolate them from each
other

Nov 28, 2018 Sprenkle - CSCI330 14

Process 1
Process 3

OS

Process 2

Process 1

Text
Data

Stack

OS

Heap

8

Using Disk
• We still have a large amount of [cheap]disk

space though!
• If the total size of desired memory is larger than

the Physical Address Space (PAS), overflow to
disk
ØDisk: can store a lot, but relatively slow to access
ØMemory: much faster than disk, but can only store a

subset
Caching!
(Swap Space)

Nov 28, 2018 Sprenkle - CSCI330 15

Address Translation: Wish List

• Map virtual addresses to
physical addresses

• Allow multiple processes
to be in memory at once,
but isolate them from
each other

• Determine which subset
of data to keep in
memory/move to disk

Nov 28, 2018 Sprenkle - CSCI330 16

Process 1
Process 3

OS

Process 2

Process 1

Text
Data

Stack

OS

Heap

9

Programmer Perspective
• Mix of user and compiler needs

ØHigh-level language: probably cares more about
memory availability

Ø Low-level language: probably cares a lot about
memory addresses

• One major concern: library code
Ø I want to #include lots of functionality for free!

Nov 28, 2018 Sprenkle - CSCI330 17

If multiple processes want to use the same
library, how should we support that?

A.Add a copy of the library code to the executable
file at compile time.

B.Load a copy of the library code into memory
when the process begins executing.

C.Map a shared copy of the library code in each
process’s virtual address space.

Nov 28, 2018 Sprenkle - CSCI330 18

10

Linking Tradeoffs

(A) Static Linking
• Bundle up one giant

executable, with copies of
all library code
Ø Advantage: fully self-

contained, not dependent on
system libraries (portable)

Ø Disadvantage: makes
executable take up lots of
space (on disk and in
memory)

(B/C) Dynamic Linking
• Executable refers to

external library code, which
must be installed on system
(or runtime error)
Ø Advantage: memory

efficiency, only one copy of
library code needed

Ø Disadvantage: must have
library installed on system to
use it

Nov 28, 2018 Sprenkle - CSCI330 19

Dynamic Libraries
• On Linux: .so (shared object) file
• On Windows: .dll (dynamically linked library) file
• Example: C standard library (libc)

Ø Every process can use the same libc code (printf,
malloc, strlen, etc.)

Nov 28, 2018 Sprenkle - CSCI330 20

$ ldd strcmp_example
linux-vdso.so.1 (0x00007ffd41ffd000)
libc.so.6 => /lib64/libc.so.6 (0x00007fc954d72000)
/lib64/ld-linux-x86-64.so.2 (0x000055af5e366000)

Displays shared objects required

11

Dynamic Library in Memory

Process 1
Process 3

OS

Process 2

Process 1Text
Data

Stack

OS

Heap

Text
Data

Stack

OS

Heap

Text
Data

Stack

OS

Heap

libc code

libc code is shared (read-only)
by all processes that need it.

Only one copy needs to be in
memory!

Nov 28, 2018 Sprenkle - CSCI330 21

Address Translation: Wish List

• Map virtual addresses to
physical addresses

• Allow multiple processes to
be in memory at once, but
isolate them from each other

• Determine which subset of
data to keep in
memory/move to disk

• Allow the same physical
memory to be mapped in
multiple processes’ VASes

Nov 28, 2018 Sprenkle - CSCI330 22

Process 1

Process 3

OS

Process 2

Process 1

Text
Data

Stack

OS

Heap

libc code

12

Compiler Perspective

• Compiler’s goal: generate assembly code that

will run… later.

• It generates the instructions for code and puts

them somewhere in the resulting executable

Nov 28, 2018 Sprenkle - CSCI330 23

Changing the Program Counter

• Recall: PC register contains address of next
instruction

• The compiler must change the PC when program
control flow needs it

Ø if / else: skip over some section of code

• jump over instructions

Ø loops: keep repeating the same code

• jump back to same instructions

Ø function call: execute code at some other location, come
back later

• All of these cases: compiler must be setting the PC
to some value

Nov 28, 2018 Sprenkle - CSCI330 24

13

Placing and Finding Code

Option A: Choose addresses
f1: 0x1000 add %eax, %ecx

…
0x100C call f2 (jump to 0x104C)

…
f2: 0x104C movl (%edx), %eax

…
ret

Option B: Use relative addresses

Suppose we’re generating code for two functions: f1() and f2(), and f1 calls f2

f1: BASE add %eax, %ecx

…
BASE + 0x0C call f2 (jump forward 0x40)

…
f2: BASE + 0x4C movl (%edx), %eax

…
ret

Nov 28, 2018 Sprenkle - CSCI330 25

Placing and Finding Code

Option A: Choose addresses
f1: 0x1000 add %eax, %ecx

…
0x100C call lib_f (jump to 0x0xF460)

…

lib_f: 0xF460 movl (%edx), %eax

…
ret

Option B: Use relative addresses
f1: BASE add %eax, %ecx

…
BASE + 0x0C movl (load LIB_BASE)

BASE + 0x10 call f2 (jump to loaded
LIB_BASE)
…

lib_f: LIB_BASE movl (%edx), %eax
…
ret

Elsewhere in memory…

Nov 28, 2018 Sprenkle - CSCI330 26

Now suppose we’re generating a function that makes a library call

Elsewhere in memory…

14

Which would you use? Why?
How does it relate to OS / virtual memory?

Option A: Choose addresses
f1: 0x1000 add %eax, %ecx

…
0x100C call lib_f (jump to 0x0xF460)

…

lib_f: 0xF460 movl (%edx), %eax

…
ret

Option B: Use relative addresses
f1: BASE add %eax, %ecx

…
BASE + 0x0C movl (load LIB_BASE)

BASE + 0x10 call f2 (jump to loaded
LIB_BASE)
…

lib_f: LIB_BASE movl (%edx), %eax
…
ret

Elsewhere in memory…

Nov 28, 2018 Sprenkle - CSCI330 27

Now suppose we’re generating a function that makes a library call.

Elsewhere in memory…

Without Help
(Virtual Memory or Hardware)
• Without help from the OS/hardware, can’t do B.
• Option A works…sometimes.

Process 1
OS

Process 2

Process 3

0x1000

0x9000

f1: 0x1000 add %eax, %ecx

…
0x100C call f2 (jump to 0x1050)

…
f2: 0x104C movl (%edx), %eax

…
ret

Process 1

OS

Process 2

Process 3

0x1000

0x9000

PAS PAS

Nov 28, 2018 Sprenkle - CSCI330 28

15

Challenge: Dynamic Environment
• Compiler can’t realistically know:

ØWhen will the code run?
ØWhich machine(s) will the code run on?
ØHow much memory will be available at the time?
ØWhere in the address space will that memory be

available?

Conclusion: the compiler’s job is much easier
if it can rely on the OS/Hardware to help with placement.

Nov 28, 2018 Sprenkle - CSCI330 29

With Virtual Memory (OS and Hardware)

Option A: Choose addresses
f1: 0x1000 add %eax, %ecx

…

0x100C call lib_f (jump to 0x0xF460)

…

lib_f: 0xF460 movl (%edx), %eax

…

ret

Option B: Use relative addresses
f1: BASE add %eax, %ecx

…

BASE +
0x0C

movl (load LIB_BASE)

BASE +
0x10

call f2 (jump to loaded
LIB_BASE)

…

lib_f: LIB_BASE movl (%edx), %eax

…

ret

Elsewhere in memory…

Nov 28, 2018 Sprenkle - CSCI330 30

Elsewhere in memory…

For your local code generation
(VM provides the relative address)

Both options A and B work easily
• Compiler has abstract view of memory to use however it wants

For shared libraries

16

Address Translation: Wish List

• Map virtual addresses to
physical addresses

• Allow multiple processes to
be in memory at once, but
isolate them from each other

• Determine which subset of
data to keep in
memory/move to disk

• Allow the same physical
memory to be mapped in
multiple process VASes

Nov 28, 2018 Sprenkle - CSCI330 31

Process 1
Process 3

OS

Process 2

Process 1

Text
Data

Stack

OS

Heap

libc code

OS Perspective

• Primary challenge: Which physical memory do

we give to processes?

• Other important considerations:

ØProtection: OS is resource gatekeeper, must isolate

itself (and processes)

ØPerformance: OS should map memory for best

performance, as long as it doesn’t violate protection

Nov 28, 2018 Sprenkle - CSCI330 32

17

Without Virtual Memory Abstraction…
• Physical memory starts as one big

empty space
• When starting new processes, allocate

memory
ØAt first, placement is easy: lots of large

chunks free

OS

Nov 28, 2018 Sprenkle - CSCI330 33

Without Virtual Memory Abstraction…
• Physical memory starts as one big empty

space
• When starting new processes, allocate

memory
ØAt first, placement is easy: lots of large

chunks free
• Over time, processes will terminate,

leaving gaps
• Now we have to decide, for new

processes, where should they go?

OS

?

Nov 28, 2018 Sprenkle - CSCI330 34

18

Where should process P be placed?
• Why place it there?

ØGive an argument for each option OS

Process P

C

B

A

Nov 28, 2018 Sprenkle - CSCI330 35

Where should process P be placed?
• First fit

ØDon’t spend time searching!
• Best fit

Ø It fits tightly!
ØMaybe no other process will fit in that spot

• Worst fit
Ø Leaves lots of space for another process

OS

Process P

C

B

A

Nov 28, 2018 Sprenkle - CSCI330 36

First Fit

Best Fit

Worst Fit

19

(External) Fragmentation
• No matter where it ends up, the

remaining gaps get smaller
• Large gaps are probably still usable,

small ones likely aren’t
• Fragmentation: over time, we end up

with small gaps that become more
difficult to use (eventually, wasted)

• “External” because the gaps are between
allocated pieces

OS

C

B

A

Nov 28, 2018 Sprenkle - CSCI330 37

Looking Ahead
• Project 5 due next Friday

ØBackground slides

Nov 28, 2018 Sprenkle - CSCI330 38

