
1

Today
• Memory Management

ØVirtual Memory
Ø Segmentation, Paging

• Project 5

Nov 30, 2018 Sprenkle - CSCI330 1

Review
• What abstraction does virtual memory provide?
• What requirements do we have for the VM, from 

the various stakeholders, so far?

Nov 30, 2018 Sprenkle - CSCI330 2

Aaron Bauer, University of Washington
“Understanding Human Problem Solving in 

Complex Digital Environments”
Talk at 4 p.m. (Reception at 3:45 p.m.)



2

Address Translation: Wish List
• Map virtual addresses to 

physical addresses
• Allow multiple processes 

to be in memory at once, 
but isolate them from 
each other

• Determine which subset 
of data to keep in 
memory/move to disk

• Allow the same physical 
memory to be mapped in 
multiple process VASes

Nov 30, 2018 Sprenkle - CSCI330 3

Process 1
Process 3

OS

Process 2

Process 1

Text
Data

Stack

OS

Heap

libc code

Review: 

Where should process P be placed?
• First fit

ØDon’t spend time searching!

• Best fit

Ø It fits tightly!

ØMaybe no other process will fit in that spot

• Worst fit

Ø Leaves lots of space for another process

OS

Process P

C

B

A

Nov 30, 2018 Sprenkle - CSCI330 4

First Fit

Best Fit

Worst Fit



3

(External) Fragmentation
• No matter where it ends up, the 

remaining gaps get smaller
• Large gaps are probably still usable, 

small ones likely aren’t
• Fragmentation: over time, we end up 

with small gaps that become more 
difficult to use (eventually, wasted)

• “External” because the gaps are between
allocated pieces

OS

C

B

A

Nov 30, 2018 Sprenkle - CSCI330 5

(External) Fragmentation

• Suppose we put it here, and later, P asks 

for more memory?

• What if there isn’t enough space…

ØMove P?

ØMove everybody to compact the address 

space?

• This seems bad.  Lots of tough problems 

(placement, fragmentation) with no clear 

solutions.

OS

P

Nov 30, 2018 Sprenkle - CSCI330 6



4

Alternative Organization of PAS

• Divide PAS into fixed-size pieces

• Use memory translation to assign virtual 

addresses to physical locations

• Every physical location is an equally good 

choice!

OS
OS

Nov 30, 2018 Sprenkle - CSCI330 7

Address Translation: Wish List
• Map virtual addresses to 

physical addresses
• Allow multiple processes to 

be in memory at once, but 
isolate them from each other

• Determine which subset of 
data to keep in 
memory/move to disk

• Allow the same physical 
memory to be mapped in 
multiple process VASes

• Make it easier to perform 
placement in a way that 
reduces fragmentation

Nov 30, 2018 Sprenkle - CSCI330 8

Process 1
Process 3

OS

Process 2

Process 1

Text
Data

Stack

OS

Heap

libc code



5

OS Perspective
• Primary challenge: Which physical memory do 

we give to processes?

• Other important considerations:
ØProtection: OS is resource gatekeeper, must isolate 

itself (and processes)
ØPerformance: OS should map memory for best 

performance, as long as it doesn’t violate protection

Nov 30, 2018 Sprenkle - CSCI330 9

Address Translation: Wish List
• Map virtual addresses to 

physical addresses
• Allow multiple processes to be 

in memory at once, but isolate 
them from each other

• Determine which subset of 
data to keep in memory/move 
to disk

• Allow the same physical 
memory to be mapped in 
multiple process VASes

• Make it easier to perform 
placement in a way that 
reduces fragmentation

Nov 30, 2018 Sprenkle - CSCI330 10

Process 1
Process 3

OS

Process 2

Process 1

Text
Data

Stack

OS

Heap

libc code

• Protection: OS is resource gatekeeper, must isolate itself (and processes)
• Performance: OS should map memory for best performance, 

as long as it doesn’t violate protection



6

Recall: Context Switching Performance
• Even though it’s fast, context 

switching is expensive:
1. time spent is 100% overhead
2. must invalidate other processes’ 

resources (caches, memory mappings)
3. kernel must execute – it must be 

accessible in memory
• Solution to #3:

Ø keep kernel mapped in every process 
VAS

Øprotect it to be inaccessible

0x0

0xFFFFFFFF

Operating system

Stack

Text
Data
Heap

Nov 30, 2018 Sprenkle - CSCI330 11

Hardware

• Hardware and OS are symbiotic, often influence 

each other

Ø Example: atomic instructions

• Memory management is another important area 

of collaboration

• Hardware goals:

ØMake translation fast

ØGive OS storage for and control over mappings

Nov 30, 2018 Sprenkle - CSCI330 12



7

Address Translation: Wish List

• Map virtual addresses to physical 
addresses

• Allow multiple processes to be in 
memory at once, but isolate them 
from each other

• Determine which subset of data to 
keep in memory/move to disk

• Allow the same physical memory to 
be mapped in multiple process 
VASes

• Make it easier to perform 
placement in a way that reduces 
fragmentation

• Map addresses quickly with a little 
HW help

Nov 30, 2018 Sprenkle - CSCI330 13

Process 1

Process 3

OS

Process 2

Process 1

Text
Data

Stack

OS

Heap

libc code

Combination of hardware 
and OS, working together.

In hardware, MMU:
Memory Management Unit

How does each benefit from having a 
logical memory abstraction?
• The user

ØMemory size, protection
• The programmer

Ø Shared libraries
• The compiler

ØPlacement of data
• The OS / OS designer

ØMemory placement, fragmentation
• The hardware / hardware designer

Ø Just makes it more complex BUT can help OS

Nov 30, 2018 Sprenkle - CSCI330 14



8

PROJECT 5
Awkward transition

Nov 30, 2018 Sprenkle - CSCI330 15

Project 5
• Combines processes and memory management

• proc.c
Ø Implementations of process management and 

memory management

Nov 30, 2018 Sprenkle - CSCI330 16



9

proc.h Data Structures: memoryMap

USED
USED
FREE
FREE
USED
FREE
FREE
FREE

0

1
2
3
4
5
6
7

memoryMap

Sprenkle - CSCI330 17

• Allow one process to be loaded into each 
segment
Ø Valid Segments: 0x2000, … 0x9000
Ø (0x0000 reserved for interrupt vector, 

0x1000 reserved for kernel)

• Memory segment map:
Ø Each index corresponds

to one memory segment.
• segment = (index+2)*0x1000

• index = (segment/0x1000)-2

Ø Marked as:
• FREE or USED

Nov 30, 2018

proc.h Data Structures: PCB
• Process Control Block:

struct PCB
char name[7]
int state
int segment
int stackPointer
struct PCB *next
struct PCB *prev

DEFUNCT
STARTING
RUNNING
READY
BLOCKED

Constants:

Sprenkle - CSCI330 18Nov 30, 2018



10

proc.h Data Structures: pcbPool
• PCB Pool

0

1

2
3

4

5

6

7

pcbPool

struct PCB

struct PCB

.

.

.

struct PCB
char name[7]: "\0"
int state: DEFUNCT
int segment: 0x0000
int stackPointer 0x0000
struct PCB *next NULL
struct PCB *prev NULL

Sprenkle - CSCI330 19Nov 30, 2018

proc.h Data Structures
•struct PCB *running

0

1

2
3

4

5

6

7

pcbPool

struct PCB

struct PCB

.

.

.

struct PCB
char name[7]: "uprog2\0"
int state: RUNNING
int segment: 0x3000
int stackPointer 0xFF00
struct PCB *next NULL
struct PCB *prev NULL

Sprenkle - CSCI330 20

The currently 
running process 

Nov 30, 2018



11

proc.h Data Structures
• Ready Queue

ØDoubly-linked list

0

1

2
3

4

5

6

7

pcbPool

struct PCB
state: READY
next: NULL
prev: 

struct PCB

.

.

.

struct PCB
state: READY
next: 
prev: NULL 

.

.

.

readyHead

readyTail

struct PCB
state: READY
next:
prev: 

Sprenkle - CSCI330 21Nov 30, 2018

proc.h Data Structures: running
• Initially the running process will be the idle

process
struct PCB *running

struct PCB
char name[7]: "IDLE\0"
int state: READY
int segment: 0x1000
int stackPointer 0x????
struct PCB *next NULL
struct PCB *prev NULL

idleProc

Sprenkle - CSCI330 22

If no processes in 
the ready queue, 
run idle process

Nov 30, 2018



12

VMàPHYSICAL ADDRESS 
TRANSLATION

Equally awkward translation back

Nov 30, 2018 Sprenkle - CSCI330 23

Address Translation: Wish List

• Map virtual addresses to physical 
addresses

• Allow multiple processes to be in 
memory at once, but isolate them 
from each other

• Determine which subset of data to 
keep in memory/move to disk

• Allow the same physical memory to 
be mapped in multiple process 
VASes

• Make it easier to perform 
placement in a way that reduces 
fragmentation

• Map addresses quickly with a little 
HW help

Nov 30, 2018 Sprenkle - CSCI330 24

Process 1
Process 3

OS

Process 2

Process 1

Text
Data

Stack

OS

Heap

libc code

Combination of hardware 
and OS, working together.

In hardware, MMU:
Memory Management Unit



13

Simple (Unrealistic) Translation Example
• Process P2’s virtual addresses 

don’t align with physical 
memory’s addresses

• Consider: P2 wants to access 
address 0x1000

• Determine offset from 
physical address 0 to 
start of P2

Ø store in base

P3

P1

P2

P2
0

P2max

0

Phymax

base +

Nov 30, 2018 Sprenkle - CSCI330 25

base

Generalizing
• Problem: process may not fit in one contiguous 

region

Nov 30, 2018 Sprenkle - CSCI330 26

P2

0

P2max

0

Phymax

Base? +

P2

P2

P2

…

…

Base? +
Base? +

?



14

Generalizing
• Problem: process may not fit in 

one contiguous region
• Solution: keep a table (one per 

process)
Ø Keep details for each region in a 

row
Ø Store additional metadata (ex. 

permissions)
• Questions:

Ø How many regions should there 
be (and what size)?

Ø How to determine which table 
entry we should use?

Nov 30, 2018 Sprenkle - CSCI330 27

P2

0

P2max

0

Phymax

P2

P2

P2

…

…
?

Perm Base
R, X
R
R, W

Defining Regions - Two Approaches
• Segmentation:

ØPartition address space and 
memory into logical segments

Ø Segments have varying sizes

• Paging:
ØPartition address space and 

memory into pages
ØPages are a constant, fixed size

Nov 30, 2018 Sprenkle - CSCI330 28



15

Why would you use each approach?  
Pros/Cons
• Segmentation:

ØPartition address space and 
memory into segments

Ø Segments have varying sizes
• Paging:

ØPartition address space and 
memory into pages

ØPages are a constant, fixed size

Nov 30, 2018 Sprenkle - CSCI330 29

Consider how memory would be requested and used
Do the pros/cons change based on whose perspective?

Fragmentation
Internal
• Process asks for memory, 

doesn’t use it all

• Possible reasons:
Ø Process was wrong about 

needs
Ø OS gave it more than it asked 

for

• internal: within an allocation

External
• Over time, we end up 

with small gaps that 
become more 
difficult to use
Ø eventually, wasted

• external: unused 
memory between 
allocations

OS

Used

Memory allocated to process
Unused

Nov 30, 2018 Sprenkle - CSCI330 30



16

Which scheme is better for reducing internal 
and external fragmentation?
A.Segmentation is better than paging for both 

forms of fragmentation.
B.Segmentation is better for internal

fragmentation, while paging is better for 
external fragmentation.

C.Paging is better for internal fragmentation, 
while segmentation is better for external
fragmentation.

D.Paging is better than segmentation for both 
forms of fragmentation.

Nov 30, 2018 Sprenkle - CSCI330 31

Which scheme is better for reducing internal 
and external fragmentation?
A.Segmentation is better than paging for both 

forms of fragmentation.
B.Segmentation is better for internal

fragmentation, while paging is better for 
external fragmentation.

C.Paging is better for internal fragmentation, 
while segmentation is better for external
fragmentation.

D.Paging is better than segmentation for both 
forms of fragmentation.

Nov 30, 2018 Sprenkle - CSCI330 32



17

Segmentation vs. Paging
• A segment is good logical unit of information

ØCan be sized to fit any contents 
Ø Easy to share large regions (e.g., code, data)
ØProtection requirements correspond to logical data 

segment 
• A page is good physical unit of information

Ø Simple physical memory placement
ØNo external fragmentation
ØConstant sizes make it easier for hardware to help

Nov 30, 2018 Sprenkle - CSCI330 33

Logical View of Segmentation

1

3

2

4

1
4

2

3

user space physical memory space

Nov 30, 2018 Sprenkle - CSCI330 34

Since segments vary in length, 
memory allocation is a dynamic storage allocation problem



18

Paging Model of Logical and  
Physical Memory

Nov 30, 2018 Sprenkle - CSCI330 35

Generalizing
• Problem: process may not fit in 

one contiguous region
• Solution: keep a table (one per 

process)
Ø Keep details for each region in a 

row
Ø Store additional metadata (ex. 

permissions)
• Interesting questions:

Ø How many regions should there 
be (and what size)?

Ø How to determine which table 
entry we should use?

Nov 30, 2018 Sprenkle - CSCI330 36

P2

0

P2max

0

Phymax

P2

P2

P2

…

…
?

Perm Base
R, X
R
R, W



19

For Both Segmentation and Paging…

• Each process has a table to track memory 

address translations

• When a process attempts to read/write to 

memory:

Øuse high order bits of virtual address to determine 

which row to look at in the table

Øuse low order bits of virtual address to determine an 

offset within the physical region

Nov 30, 2018 Sprenkle - CSCI330 37

Address Translation

Virtual Address
Upper bits Lower bits

Physical Address

Phy LocMeta Perm …

Physical 
Memory

Table

Nov 30, 2018 Sprenkle - CSCI330 38

Which row? Offset into region



20

Performance Implications

Virtual Address

Upper bits Lower bits

Physical Address

Phy LocMeta Perm …

Physical 

Memory

Table

Nov 30, 2018 Sprenkle - CSCI330 39

Which row? Offset into regionWithout VM:

Go directly to 

address in 

memory

With VM:

Do a lookup in 

memory to 

determine which 

address to use

Concept: level of indirection

Defining Regions - Two Approaches
• Segmentation:

ØPartition address space and 
memory into logical segments

Ø Segments have varying sizes

• Paging:
ØPartition address space and 

memory into pages
ØPages are a constant, fixed size

Nov 30, 2018 Sprenkle - CSCI330 40



21

Segment Table
• One table per process
• Where is the table located in 

memory?
Ø Segment table base register (STBR)
Ø Segment table size register  (STSR)

• Table entries: Segment metadata
Ø V: valid bit

• does it contain a mapping?
Ø Base: segment location in physical 

memory
Ø Bound: segment size in physical 

memory
Ø Permissions

BoundBaseV Perm …STBR
STSR

Nov 30, 2018 Sprenkle - CSCI330 41

Segment Address Translation

• Physical address:
base of s + i

Virtual Address
Segment s

…

Offset i

Physical Address

Nov 30, 2018 Sprenkle - CSCI330 42



22

Check if Segment s is within Range

Nov 30, 2018 Sprenkle - CSCI330 43

Virtual Address
Segment s

…

Offset i

Physical Address

STBR
STSR

s < STSR

Check if Segment Entry s is Valid

Nov 30, 2018 Sprenkle - CSCI330 44

Virtual Address
Segment s

…

Offset i

Physical Address

STBR
STSR

V == 1



23

Check if Offset i is within Bounds

Nov 30, 2018 Sprenkle - CSCI330 45

Virtual Address
Segment s

…

Offset i

Physical Address

STBR
STSR

i < Bound

Translate Address

Nov 30, 2018 Sprenkle - CSCI330 46

Virtual Address
Segment s

…

Offset i

Physical Address

STBR
STSR

+



24

Pros and Cons of Segmentation

Pros
• Each segment can be

Ø located independently

Ø separately protected

Ø grown/shrunk independently

• Small segment table size
Ø ~256 Bytes à 1GB memory

Cons
• Variable-size allocation

Ø Difficult to find holes in 
physical memory

Ø External fragmentation

Nov 30, 2018 Sprenkle - CSCI330 47

Looking Ahead
• Project 5 due next Friday

Nov 30, 2018 Sprenkle - CSCI330 48


