
1

Today
• Memory Management

Ø Segmentation, Paging
• Improving memory performance

ØMMU
Ø Translation Lookaside Buffer

Dec 3, 2018 Sprenkle - CSCI330 1

Review
• What abstraction does virtual memory provide?
• What requirements do we have for the VM, from

the various stakeholders?
• What is paging? Segmentation?

ØWhat are they used for?
ØCompare and contrast them

• How does the OS translate from the virtual
address to the physical address?

Dec 3, 2018 Sprenkle - CSCI330 2

Cody Watson, William & Mary
“An Introduction to Deep Learning

and Its Applications”
Talk at 4 p.m.

2

The Big Picture: Virtual Memory

Dec 3, 2018 Sprenkle - CSCI330 3

How can the OS build the abstraction of a
private, potentially large address space

for multiple running processes
(all sharing memory)

on top of a single, physical memory?

Review: Address Translation: Wish List
• Map virtual addresses to

physical addresses
• Allow multiple processes to

be in memory at once, but
isolate them from each other

• Determine which subset of
data to keep in
memory/move to disk

• Allow the same physical
memory to be mapped in
multiple process VASes

• Make it easier to perform
placement in a way that
reduces fragmentation

Dec 3, 2018 Sprenkle - CSCI330 4

Process 1
Process 3

OS

Process 2

Process 1

Text
Data

Stack

OS

Heap

libc code

3

Review: (Unrealistic) Translation Example

• Process P2’s virtual addresses
don’t align with physical
memory’s addresses

• Consider: P2 wants to access
address 0x1000

• Determine offset from
physical address 0 to
start of P2

Ø store in base

P3

P1

P2

P2
0

P2max

0

Phymax

base +

Dec 3, 2018 Sprenkle - CSCI330 5

base

Review: Generalizing

• Problem: process may not fit in
one contiguous region

• Solution: keep a table (one per
process)
Ø Keep details for each region in a

row

Ø Store additional metadata (ex.
permissions)

• Interesting questions:
Ø How many regions should there

be (and what size)?

Ø How to determine which table
entry we should use?

Dec 3, 2018 Sprenkle - CSCI330 6

P2

0

P2max

0

Phymax

P2

P2

P2

…

…
?

Perm Base
R, X

R

R, W

4

Review: Defining Regions
• Segmentation:

ØPartition address space and
memory into logical segments

Ø Segments have varying sizes

• Paging:
ØPartition address space and

memory into pages
ØPages are a constant, fixed size

Dec 3, 2018 Sprenkle - CSCI330 7

Review: Fragmentation
Internal
• Process asks for memory,

doesn’t use it all

• Possible reasons:
Ø Process was wrong about

needs
Ø OS gave it more than it asked

for

• internal: within an allocation

External
• Over time, we end up

with small gaps that
become more
difficult to use
Ø eventually, wasted

• external: unused
memory between
allocations

OS

Used

Memory allocated to process
Unused

Dec 3, 2018 Sprenkle - CSCI330 8

5

Review: Segmentation vs. Paging
• A segment is good logical unit of information

ØCan be sized to fit any contents
Ø Easy to share large regions (e.g., code, data)
ØProtection requirements correspond to logical data

segment
• A page is good physical unit of information

Ø Simple physical memory placement
ØNo external fragmentation
ØConstant sizes make it easier for hardware to help

Dec 3, 2018 Sprenkle - CSCI330 9

Review: For Both Segmentation and Paging…

• Each process has a table to track memory
address translations

• When a process attempts to read/write to
memory:
Øuse high order bits of virtual address to determine

which row to look at in the table
Øuse low order bits of virtual address to determine an

offset within the physical region

Dec 3, 2018 Sprenkle - CSCI330 10

6

Review: Performance Implications

Virtual Address
Upper bits Lower bits

Physical Address

Phy LocMeta Perm …

Physical
Memory

Table

Dec 3, 2018 Sprenkle - CSCI330 11

Which row? Offset into regionWithout VM:
Go directly to
address in
memory

With VM:
Do a lookup in
memory to
determine which
address to use

Concept: level of indirection

Defining Regions - Two Approaches
• Segmentation:

ØPartition address space and
memory into logical segments

Ø Segments have varying sizes

• Paging:
ØPartition address space and

memory into pages
ØPages are a constant, fixed size

Dec 3, 2018 Sprenkle - CSCI330 12

7

Segment Table
• One table per process
• Where is the table located in

memory?
Ø Segment table base register (STBR)
Ø Segment table size register (STSR)

• Table entries: Segment metadata
Ø V: valid bit

• does it contain a mapping?
Ø Base: segment location in physical

memory
Ø Bound: segment size in physical

memory
Ø Permissions

BoundBaseV Perm …STBR
STSR

Dec 3, 2018 Sprenkle - CSCI330 13

Segment Address Translation

• Physical address:
base of s + i

Virtual Address
Segment s

…

Offset i

Physical Address

Dec 3, 2018 Sprenkle - CSCI330 14

8

Check if Segment s is within Range

Dec 3, 2018 Sprenkle - CSCI330 15

Virtual Address
Segment s

…

Offset i

Physical Address

STBR
STSR

s < STSR

Check if Segment Entry s is Valid

Dec 3, 2018 Sprenkle - CSCI330 16

Virtual Address
Segment s

…

Offset i

Physical Address

STBR
STSR

V == 1

9

Check if Offset i is within Bounds

Dec 3, 2018 Sprenkle - CSCI330 17

Virtual Address
Segment s

…

Offset i

Physical Address

STBR
STSR

i < Bound

Check Permissions

Dec 3, 2018 Sprenkle - CSCI330 18

Virtual Address
Segment s

…

Offset i

Physical Address

STBR
STSR

Perm?

10

Translate Address

Dec 3, 2018 Sprenkle - CSCI330 19

Virtual Address
Segment s

…

Offset i

Physical Address

STBR
STSR

+

Pros and Cons of Segmentation

Pros Cons

Dec 3, 2018 Sprenkle - CSCI330 20

11

Pros and Cons of Segmentation

Pros
• Each segment can be

Ø located independently

Ø separately protected

Ø grown/shrunk independently

• Small segment table size
Ø ~256 Bytes à 1GB memory

Cons
• Variable-size allocation

Ø Difficult to find holes in
physical memory

Ø External fragmentation

Dec 3, 2018 Sprenkle - CSCI330 21

Defining Regions - Two Approaches
• Segmentation:

ØPartition address space and
memory into logical segments

Ø Segments have varying sizes
• Paging:

ØPartition address space and
memory into pages

ØPages are a constant, fixed size

Dec 3, 2018 Sprenkle - CSCI330 22

12

Paging Terminology
• For each process, the virtual address space is

divided into fixed-size pages
• For the system, the physical memory is divided

into fixed-size frames
• The size of a page is equal to that of a frame

ØOften 4 KB in practice
Ø Some CPUs allow for small and large pages at the

same time

Dec 3, 2018 Sprenkle - CSCI330 23

Page Table

• One table per process

• Table parameters in memory

Ø Page table base register

Ø Page table size register

• Table elements: Page metadata

Ø V: valid bit

Ø R: referenced bit

Ø D: dirty bit

• If page has been modified

Ø Frame: location in physical memory

Ø Perm: access permissions

Dec 3, 2018 Sprenkle - CSCI330 24

PTBR
PTSR

V R D Frame Perm …

13

Paging Address Translation

• Physical address =
frame of p + offset i

Virtual Address
Page p Offset i

Physical Address

Dec 3, 2018 Sprenkle - CSCI330 25

V R D Frame Perm …

Why do we just need the frame number, rather than the location?

Paging Address Translation

• Physical address =
frame of p + offset i

Virtual Address
Page p Offset i

Physical Address

Dec 3, 2018 Sprenkle - CSCI330 26

V R D Frame Perm …

Frames are all the same size
Only need to store the frame number in the table, not exact address!

14

Check if Page p is Within Range

Dec 3, 2018 Sprenkle - CSCI330 27

Virtual Address
Page p Offset i

Physical Address

V R D Frame Perm …

PTBR
PTSR

p < PTSR

Check if Page Table Entry p is Valid

Dec 3, 2018 Sprenkle - CSCI330 28

Virtual Address

Page p Offset i

Physical Address

V R D Frame Perm …

PTBR
PTSR

V == 1

15

Check if Operation is Permitted

Dec 3, 2018 Sprenkle - CSCI330 29

Virtual Address
Page p Offset i

Physical Address

V R D Frame Perm …

PTBR
PTSR

Perm?

Translate Address

Dec 3, 2018 Sprenkle - CSCI330 30

Virtual Address
Page p Offset i

Physical Address

V R D Frame Perm …

PTBR
PTSR

concat

16

Physical Address by Concatenation

Dec 3, 2018 Sprenkle - CSCI330 31

Virtual Address
Page p Offset i

Physical Address

V R D Frame Perm …

PTBR
PTSR

concat

Physical Address by Concatenation

Dec 3, 2018 Sprenkle - CSCI330 32

Virtual Address
Page p Offset i

Physical Address

V R D Frame Perm …

PTBR
PTSR

concat

Frame f Offset i

17

Pros and Cons of Paging

Pros Cons

Dec 3, 2018 Sprenkle - CSCI330 33

Pros and Cons of Paging

Pros
• Each page can be

Ø located independently
Ø separately protected

• Fixed-size pages and frames
Ø No external fragmentation
Ø No difficult placement

decisions

Cons
• Large table size

Ø ~4MB for 1GB of memory
• That’s for each process!

• maybe internal
fragmentation

Dec 3, 2018 Sprenkle - CSCI330 34

18

Hybrid Approach: Paged Segmentation – x86
• Design:

Ø Multiple lookups: first in
segment table, which points
to a page table

Ø Extra level of indirection

• Reality:
Ø All segments are max physical

memory size
Ø Segments effectively unused,

available for “legacy” reasons
Ø (Mostly) disappeared in x86-64

VM PM
Page
Tables

Segment
Table

Outstanding Problems
• Mostly considering paging from here on

1.Page tables are way too big
Ø Most processes don’t need that many pages
Ø Can’t justify a huge table

2.Adding indirection hurts performance
Ø Accessing memory to access memory…

Dec 3, 2018 Sprenkle - CSCI330 36

19

Challenge: Large Page Tables
• Most processes don’t need that many pages

Ø Can’t justify a huge table for every process

• What can we do so that our page table scales
with the amount of memory we need?
Ø What problem does this sound like?

Dec 3, 2018 Sprenkle - CSCI330 37

Solution:
MORE indirection!

V R D Frame …

Multi-Level Page Tables
Virtual Address

1st-level Page d Offset i2nd-level Page p

Points to (base)
frame containing
2nd-level page
table

concat

Physical Address

Dec 3, 2018 Sprenkle - CSCI330 38

V R D Frame …

20

V R D Frame …

Multi-Level Page Tables
Virtual Address

1st-level Page d Offset i2nd-level Page p

Points to (base)
frame containing
2nd-level page
table

concat

Physical Address

Insight: VAS is typically
sparsely populated

Idea: every process gets a
page directory
• 1st-level table

Only allocate 2nd-level
tables when the process is
using that VAS region!

Dec 3, 2018 Sprenkle - CSCI330 39

V R D Frame …

Multi-Level Page Tables

Text
Data

Stack

OS

Heap

V R D Frame …

Virtual Address
1st-level Page d Offset i2nd-level Page p

Points to (base)
frame containing
2nd-level page
table

concat

Physical Address

V R D Frame …

Dec 3, 2018 Sprenkle - CSCI330 40

21

Multi-Level Page Tables
• With only a single level, the page table must be

large enough for the largest processes
• Multi-level table à extra level of indirection:

ØWORSE performance – more memory accesses
ØMuch better memory efficiency – process’s page

table is proportional to how much of the VAS it’s
using

• Small process à low page table storage
• Large process à high page table storage, needed

it anyway
Dec 3, 2018 Sprenkle - CSCI330 41

Challenge: Translation Cost

• Each application [logical] memory access now

requires multiple memory accesses!

• Suppose a memory access takes 100 ns

Øone-level paging: 200 ns

Ø two-level paging: 300 ns

• Solution: Add hardware, take advantage of

locality…

ØMost references are to a small number of pages

ØKeep translations of these in high-speed memory

Dec 3, 2018 Sprenkle - CSCI330 42

22

Memory Management Unit (MMU)
• When a process tries to

use memory, send the
address to MMU

• MMU will do as much
work as it can
Ø If it knows the answer,

great!
• If it doesn’t

Ø trigger exception (OS
gets control)

Ø consult software table

Dec 3, 2018 Sprenkle - CSCI330 43

Process 1
Process 3

OS

Process 2

Process 1

Text
Data

Stack

OS

Heap

libc code

Combination of
hardware and OS,
working together

In hardware, MMU:
Memory Management
Unit

Translation Look-aside Buffer (TLB)
• Fast memory mapping cache inside MMU keeps

most recent translations
Ø If key matches, get frame number quickly
ØOtherwise, wait for normal translation

• Add to TLB

“key”

Page p or [page d, page p] or [segment s, page p] Offset i

Match
key

frame

Frame f Offset i
Dec 3, 2018 Sprenkle - CSCI330 44

Higher order bits

Parallel check

23

Recall: Context Switching Performance
• Even though it’s fast, context switching is

expensive:
1. time spent is 100% overhead
2. must invalidate other processes’ resources (caches,

memory mappings)
3. kernel must execute – it must be accessible in

memory

• Also recall: Advantage of threads
Ø Threads all share one process VAS

Dec 3, 2018 Sprenkle - CSCI330 45

Text
Data

Stack

OS

Heap

Translation Cost with TLB
• Cost is determined by

Ø Speed of memory: ~100 nsec
Ø Speed of TLB: ~10 nsec
ØHit ratio: fraction of memory references satisfied by

TLB, ~95%
• Speed to access memory with address

translation (2-level paging):
Ø TLB miss: 300 nsec (200% slowdown)
Ø TLB hit: 110 nsec (10% slowdown)
ØAverage: 110 x 0.95 + 300 x 0.05 = 119.5 nsec

Dec 3, 2018 Sprenkle - CSCI330 46

24

TLB Design Issues

• The larger the TLB…

Ø the higher the hit rate

Ø the slower the response

Ø the greater the expense

Ø the larger the space (in MMU, on chip)

• TLB has a major effect on performance!

ØMust be flushed on context switches

ØAlternative: tagging entries with PIDs

Dec 3, 2018 Sprenkle - CSCI330 47

Virtual Addressing: Under the Hood

raise
exception

probe
page table

load
TLB

probe
TLB

access
physical
memory

access
valid?

page
fault? kill

(lookup and/or)
allocate
frame

page
on

disk?
fetch

from disk

zero-fillload
TLB

start
here

MMU

OS

illegal
reference

legal
reference

yes

no (first reference)

yes

no

miss

hit

Dec 3, 2018 Sprenkle - CSCI330 48

NEXT!

25

Summary
• Many options for translation mechanism:

segmentation, paging, hybrid, multi-level paging
ØAll of them: level(s) of indirection

• Simplicity of paging makes it most common
today

• Multi-level page tables improve memory
efficiency
Øpage table bookkeeping scales with process VAS

usage
• TLB in hardware MMU exploits locality to

improve performance
Dec 3, 2018 Sprenkle - CSCI330 49

Looking Ahead
• Project 5 due Friday

Dec 3, 2018 Sprenkle - CSCI330 50

